Jacobs

4121 Carmichael Road Suite 400 Montgomery, AL 36106 Tel 334.271.1444 www.jacobs.com

March 27, 2024

Ms. Samantha Downing Alabama Department of Environmental Management 1400 Coliseum Boulevard Montgomery, AL 36110-2400

Subject: 2023 Remedial Action Activities Technical Memorandum; Downtown Environmental Assessment Project; Montgomery, AL

Dear Ms. Downing:

Enclosed are three hard copies and one electronic copy of the 2023 Remedial Action Activities Technical *Memorandum*, which is being submitted on behalf of the Downtown Environmental Alliance.

Should you have any questions regarding this document, please contact me at 334-202-6053 or <u>glendon.davis@jacobs.com</u>.

Sincerely,

2 A. Di

Glen S. Davis, P.E. Project Manager

C:

Downtown Alliance Members Ashley Mastin/ADEM J.P. Martin/Jacobs

2023 Remedial Action Activities Technical Memorandum, Montgomery Downtown Environmental Assessment Project, Montgomery, Alabama

Date:	March 27,	2024				
Attention:	Alabama [Department o	of Environmental Management			
Client:	Downtowr	Environmer	ntal Alliance			
Prepared by:	Jacobs		ALABAMA CENSEC			
Sa			No. 26705 PROFESSIONAL			
Glen S. Davis, Alabama PE No. 26705						

CH2M HILL Engineers, Inc.

4121 Carmichael Road Suite 400 Montgomery, AL 36106 United States T +1.334.271.1444

www.jacobs.com

On behalf of the Downtown Environmental Alliance (DEA), Jacobs has prepared this 2023 Remedial Action Activities Technical Memorandum (TM) to document the annual remedial action related activities conducted between January 1, 2023 and December 31, 2023 for the Downtown Environmental Assessment Project (DEAP). In accordance with the *Institutional Controls Plan Addendum, Montgomery Downtown Environmental Assessment Project; Montgomery, Alabama* (ICP Addendum) (CH2M, 2023a), a summary of the annual activities and associated data collected at the DEAP site are now summarized in annual TMs instead of annual Remedial Action Progress Reports (RAPRs). RAPRs will be submitted on a triennial basis and will include additional site inspection activities and analytical data evaluation (i.e., Mann-Kendall trend analysis). Annual activities at the DEAP are conducted in accordance with the *Institutional Controls Plan Downtown Environmental Assessment Project, Montgomery, Alabama* (ICP) (CH2M¹, 2019) and the ICP Addendum. The following activities were conducted in 2023:

- Depth-to-water measurements at the nine shallow and six intermediate zone wells.
- Groundwater samples from six site monitoring wells (MW-02S, MW-03S, MW-08S, MW-12S, MW-13S, and MW-14S) (Figure 1).
- Windshield driving inspection of the DEAP area to review the site for major construction efforts and changes to the property use in the downtown area.
- Management of environmental covenants (ECs) on the project website.
- Mailing institutional control (IC) notification letters annually to ensure that existing and new downtown
 property owners will be informed of the ICs and City Ordinance for the DEAP.
- Communications with the Community Outreach Group (COG) to keep them informed of project progress and to understand perspectives of people who live, work, or own property in the DEAP project area.
- Maintenance of the project website as a source of information for the public about the project.

In addition to the annual activities described above, the following triennial activities were approved for the DEAP in the ICP Addendum:

- Conduct random property inspections and interviews.
- Submit an RAPR.

¹ CH2M HILL Engineers, Inc. (CH2M) is now part of Jacobs Engineering Group Inc.

The triennial inspections and interviews, in addition to the annual activities identified above, will be completed in 2025 and subsequently documented in an RAPR to be submitted by March 31, 2026. This TM is the first of the annual activities TMs to be prepared for the DEAP.

Summary of 2023 Groundwater Monitoring

Water levels were measured in the shallow and intermediate aquifer monitoring wells at the DEAP site in May 2023. The water levels measured at that time ranged from approximately 24 to 55 feet below ground surface (Table 1). These data indicate that groundwater generally flows west-northwest toward Cypress Creek and the Alabama River (Figure 2), which is consistent with historical data.

Groundwater samples were collected from six shallow aquifer monitoring wells (MW-02S, MW-03S, MW-08S, MW-12S, MW-13S, and MW-14S) between May 30 and 31, 2023. These samples were analyzed for tetrachloroethene (PCE). Groundwater sampling was conducted using the U.S. Environmental Protection Agency Region 4 low-flow purge method. Specific conductance, oxidation-reduction potential, dissolved oxygen, temperature, and pH measurements were allowed to stabilize for three consecutive readings and turbidity below 10 nephelometric turbidity units was achieved while a steady water level was maintained before collecting the sample. The results of the May 2023 groundwater sampling are summarized in Table 2. Final water quality parameters for each well sampled are provided in Table 3.

The extent of PCE concentrations that were greater than the Groundwater Protection Standard at the DEAP site is presented on Figure 3. Consistent with the conceptual site model and historical and current results, two primary PCE plumes are present at the DEAP site. Time series trend charts of PCE concentrations for MW-02S, MW-03S, MW-08S, MW-12S, MW-13S, and MW-14S are provided on Figures 4 through 9. The analytical laboratory report and data quality evaluation are included in Attachment 1. Field records are provided in Attachment 2.

PCE concentrations in groundwater at the site in May 2023 were similar to, or lower than, those that have been reported since July 2016 (Table 2). Concentrations at all six wells have declined since the previous sampling event, and PCE concentrations at MW-02S, MW-03S, and MW-08S have been declining for the last three events. PCE concentrations at locations MW-03S, MW-08S, and MW-14S were below the PCE Groundwater Protection Standard of 5 micrograms per liter (μ g/L) for the first time, resulting in a decreased plume extent compared to previous sampling events.

Concentrations in MW-13S, the most downgradient well installed at the site and adjacent to Cypress Creek, have been decreasing since the 2021 sampling event (Table 2; Figure 8). Based on the site-specific dilution attenuation factor of 73 (CH2M, 2023b), PCE concentrations in MW-13S would need to be greater than 2,600 μ g/L before the surface water quality criteria for fish and wildlife (36 μ g/L) in Cypress Creek would be exceeded due to groundwater to surface water discharges from the plumes. As of May 2023, concentrations at MW-13S are an order of magnitude below the 2,600 μ g/L threshold.

Overall, the results of the May 2023 groundwater sampling indicate the PCE groundwater plume is shrinking, and concentrations at the downgradient edge of the plume are currently an order of magnitude below levels that would indicate the plume discharge could potentially result in an exceedance of surface water quality criteria in Cypress Creek. Based on these data, the annual remedial action progress activities outlined in the ICP Addendum remain valid and appropriate for use in evaluating conditions at this site.

Site Inspections

In August 2023, a drive-by visual inspection was conducted to identify any major construction efforts or changes to the property use in the DEAP boundary. The inspection also included checking properties with ECs to evaluate whether the properties remained in compliance with the EC requirements. The properties with EC requirements are as follows:

- North Lawrence Street: Required to be used as a parking lot.
- Washington Avenue Right-of-Way: Required to remain a sidewalk and public right-of-way.

 317 North Decatur Street – McClendon Service Center: Use of, access of, interference with, and/or consumption of groundwater beneath the property is restricted without prior written approval from Alabama Department of Environmental Management (ADEM).

Photographs of property and structures were taken during the drive-by visual inspection and are included in Attachment 3. Construction efforts noted during the inspection included demolition of a residential property at 405 North Decatur Street, initiation of construction of a hotel at a property west of MW-08S, and completion of a parking lot southwest of MW-08S. No new residential properties, subsurface structures, or private groundwater wells were identified during the inspection, and the EC properties remain in compliance with the EC requirements.

In addition to the visual inspection of EC properties, a drive-by inspection of the 300 block of Madison Avenue was also conducted in August 2023 to verify that properties in that area do not have residential use on the first floor, in accordance with City Ordinance 36-2019, enacted September 3, 2019. As documented in the photographs in Attachment 3, the properties on the 300 block of Madison Avenue are commercial businesses.

The DEA also corresponded via email with Collier Neeley, the owner of the Ordeman House historical bucket well (Figure 1), on August 23, 2023 to confirm that protective measures preventing use of the bucket well (including chains, covers, screens, locks, etc.) remain in place, thereby ensuring the potential exposure pathway for groundwater remains incomplete for current and future receptors.

Based on observations during the drive-by inspections, all properties with ECs or City Ordinances are complying with the ECs and City Ordinances in place for those properties.

Community Involvement and Outreach

The DEA facilitates a Community Outreach Group (COG) of interested citizens who live, work, or own property in downtown Montgomery. The COG provides a link between the DEA and the community and helps to keep the downtown community informed about project activities. No in-person COG meetings were held in 2023; however, the COG was notified when the website was updated and when ADEM placed the Institutional Controls Plan on Public Notice. Future notices and/or meetings will be conducted as needed.

The DEA also maintains a project website. The website for the DEAP is a source of project-related information available to the public, including but not limited to DEAP site background, remedial actions, environmental covenant information, links to project reports, and project contact information. The website can be accessed at: <u>https://www.montgomeryal.gov/government/government-transparency/capital-city-plume-information</u>. The website is updated periodically as new information of potential interest to the community becomes available.

On November 27, 2023, the DEAP was notified that EJI Restaurants had plans to construct a terrace and awning on an existing building at 500 Perry Street. The DEA confirmed that the proposed construction was not within the area prohibiting first floor residential use, and the DEA also provided a site map outlining the area within which new first floor construction is required to comply with International Building Code requirements related to vapor barriers, in accordance with City Ordinance 36-2019.

No other requests for information were received in 2023. The website will continue to be updated as new information becomes available.

Environmental Covenant Management

Each year, the DEA sends out letters to the downtown property owners to notify them of the ICs placed on downtown properties and to promote the use of ECs. The 2023 annual IC notification letters (approximately 50 letters) were mailed to owners of properties within the DEA site boundary the week of November 13, 2023. The property owners were identified using the updated property database provided by Montgomery County on October 12, 2023. In addition to sending out letters to property owners in the

DEA site area, the DEA provides information regarding ECs and a form by which property owners can apply to establish ECs on the DEAP project website.

Joe McClendon, owner of McClendon Service Center, contacted the DEA via email on November 29, 2023, to confirm his understanding of the EC on his property after receiving the IC notification letter. The DEA clarified the stipulations for his property (317 North Decatur Street) via email on November 29, 2023. No other questions or feedback on the 2023 annual IC notification letters was received, and no new ECs were filed in 2023.

Conclusions and Recommendations

The results of the May 2023 annual groundwater sampling at the DEA site indicate that the groundwater PCE plume is shrinking, and concentrations at the downgradient edge of the plume are currently an order of magnitude below levels that would indicate the plume discharge could potentially result in an exceedance of surface water quality criteria in Cypress Creek. Therefore, no changes to the conceptual site model developed for the DEAP are required, and the selected remedy documented in the ICP remains valid and appropriate for use in evaluating conditions at this site.

The drive-by visual inspection of properties within the DEAP boundary, including properties with ECs and City Ordinances, in August 2023 did not identify any major construction efforts or changes to the property use in the downtown area. No new private groundwater wells were identified, and the properties with ECs or City Ordinances remain in compliance with the associated requirements. In addition, the historical bucket well that is connected to groundwater remains behind a locked gate and has a screwed-down cover preventing access to groundwater in the well. No new ECs were filed in 2023.

Based on the results of the 2023 remedial action activities, the DEA recommends continuing the annual activities identified in the ICP Addendum for 2024.

References

CH2M HILL Engineers, Inc. (CH2M). 2019. *Institutional Controls Plan, Downtown Environmental Assessment Project, Montgomery, Alabama*. Prepared for Alabama Department of Environmental Management by the Downtown Environmental Alliance. July.

CH2M HILL Engineers, Inc. (CH2M). 2023a. *Institutional Controls Plan Addendum, Downtown Environmental Assessment Project, Montgomery, Alabama*. Prepared for Alabama Department of Environmental Management by the Downtown Environmental Alliance. January.

CH2M HILL Engineers, Inc. (CH2M). 2023b. 2022 Remedial Action Progress Report, Downtown Environmental Assessment Project, Montgomery, Alabama. Prepared for Alabama Department of Environmental Management by the Downtown Environmental Alliance. May.

Tables

Woll	TOC Elevation	DTW	Groundwater
well		DTW	Elevation
Shallow Interval V	Vells		
MW-015	189.37	35.62	153.75
MW-025	188.59	37.18	151.41
MW-03S	206.18	53.23	152.95
MW-085	173.46	34.61	138.85
MW-095	213.41	51.86	161.55
MW-10S	212.67	53.88	158.79
MW-12S	157.58	24.46	133.12
MW-135	158.90	29.03	129.87
MW-14S	158.38	28.62	129.76
Intermediate Inte	rval Wells		
MW-01I	190.00	36.88	153.12
MW-05I	210.98	54.91	156.07
MW-07I	179.76	NM	NM
MW-07S	179.65	NM	NM
MW-08I	173.42	34.52	138.90
MW-12I	157.82	24.98	132.84

Table 1. Groundwater Elevations - May 30, 2023 2023 Remedial Action Activities TM, DEAP, Montgomery, Alabama

Notes:

Elevation reported in feet above mean sea level.

DEAP = Downtown Environmental Assessment Project

DTW = depth to water in feet below TOC

TOC = top of casing in feet above mean sea level

NM = Not Measured; MW-7S and MW-71 were located under a disabled vehicle.

Table 2. Groundwater Sampling Results

2023 Remedial Action Activities TM, DEAP, Montgomery, Alabama

		May 2023 PCE	May 2022 PCE	June 2021 PCE	April 2020 PCE	July 2016 PCE
Station ID	Date Sampled	Concentrations	Concentrations	Concentrations	Concentration	Concentration
Shallow Interval W	/ells					
MW-02S	5/31/2023	21.6	31.2	41.4	45.6 J	34.1
MW-03S	5/31/2023	3.16	15.5	21.6	33.1 J	6.27
MW-08S	5/30/2023	1.93	30.5	45.2	80.7 J	78.4
MW-12S	5/30/2023	30.9	36.4	20.3	30.7 J	58.9
MW-135	5/31/2023	217 J	264	292	209	174
MW-14S	5/31/2023	3.72	5.68	5.05	5.78 J	N/A

Notes:

Concentrations presented in micrograms per liter (µg/L).

The highest of the native and field duplicate concentration is presented for MW-13S.

Bold text indicates concentration exceeds the GWPS (5 μ g/L).

DEAP = Downtown Environmental Assessment Project

GWPS = Groundwater Protection Standard. GWPS for the site is equal to the U.S. Environmental Protection Agency Maximum Contaminant Level

J = Estimated. The analyte was positively identified above the MDL and below the reporting limit (RL) or qualified due to a QA/QC exceedance PCE = tetrachloroethene

U = analyte was not detected

Table 3. Field Parameter Data

2023 Remedial Action Activities TM, DEAP, Montgomery, Alabama

						Oxidation	
					Dissolved	Reduction	
	Date	рН	Conductivity	Temperature	Oxygen	Potential	Turbidity
Station	Collected	(standard unit)	(µS/cm)	(°C)	(mg/L)	(mV)	(NTU)
MW-02S	5/31/2023	5.15	215.9	23.0	5.95	97.5	7.94
MW-03S	5/31/2023	5.72	211.3	21.7	8.16	80.3	3.10
MW-085	5/30/2023	5.48	211.3	24.0	8.54	162.4	2.41
MW-12S	5/30/2023	5.42	169.9	21.5	5.11	169.2	0.34
MW-135	5/31/2023	5.40	183.3	21.8	5.58	87.1	8.27
MW-14S	5/31/2023	5.29	186.9	22.1	4.94	112.9	6.50

Notes:

μS/cm = microsiemen(s) per centimeter

°C = degree(s) Celsius

DEAP = Downtown Environmental Assessment Project

mg/L = milligram(s) per liter

mV = millivolt(s)

NTU = nephelometric turbidity unit(s)

Figures

LEGEND

Notes: 1. AG - Attorney General 2. RSA - Retirement Systems of Alabama 3. VIMS - Vapor Intrusion Monitoring System

0 250 500 _____ Feet

\\Dc1vs01\gisproj\M\MontgomeryDEAP\MapFiles\2023_RAP\Fig1_SiteBoundary.mxd AESPEJO 3/4/2024

FIGURE 1 Site Map 2023 Remedial Action Activities TM Downtown Environmental Assessment Project Montgomery, AL

LEGEND

- Shallow Monitoring Well
- Intermediate Monitoring Well
- Shallow Potentiometric Contour
- Generalized Groundwater Flow Direction

- Notes:
 1. AG Attorney General
 2. RSA Retirement Systems of Alabama
 3. Intermediate wells not used in contouring. MW-7S is considered an intermediate monitoring well due to depth of screen similar to other intermediate monitoring wells.
 4. Groundwater elevations presented in feet above mean sea level.
 5. Reach of Cypress Creek is presented as Reach 4, as defined in Baseline Biological Monitoring Results for the Cypress Creek Aquatic Ecosystem Restoration Feasibility Study (CH2M, 2012).

RSA Building

Site Boundary

FIGURE 2 May 2023 Shallow Potentiometric Surface 2023 Remedial Action Activities TM Downtown Environmental Assessment Project Montgomery, AL

250

Feet

0

Ν

500

LEGEND

- Shallow Monitoring Well
- Intermediate Monitoring Well
- ----- Isoconcentration Contour for PCE in µg/L
- Approximate Extent of PCE > 5 μg/L

RSA Building

Site Boundary

FIGURE 3 PCE Groundwater Results - May 2023 2023 Remedial Action Activities TM Downtown Environmental Assessment Project Montgomery, AL

Attachment 1 Data Quality Evaluation and Laboratory Reports

Data Quality Evaluation

Quality Assurance/Quality Control and Data Validation

The purpose of the data quality evaluation (DQE) process is to assess the effect of the overall analytical process on the usability of the data. The two major categories of data evaluation are laboratory performance and matrix interferences. The evaluation of laboratory performance is a check for compliance with the method requirements; either the laboratory did, or did not, analyze the samples within the limits of the analytical method. The evaluation of matrix interferences is more subtle and involves the analysis of several areas of results including surrogate spike recoveries, matrix spike recoveries, and duplicate sample results.

Introduction

Groundwater samples were collected for the Downtown Environmental Assessment Project in Montgomery, Alabama on May 30 and May 31, 2023, and submitted to Pace Analytical in Mount Juliet, Tennessee for volatile organic compounds (VOC) analysis by SW-846 Method 8260B. One VOC, tetrachloroethene (PCE) was requested and reported for these samples.

The numbers and types of samples collected are listed in Table B-1. Field quality control (QC) samples collected included a field duplicate (FD), a matrix spike/matrix spike duplicate (MS/MSD), an ambient/ field blank (AB), two equipment rinsate blanks (EB), and two trip blanks (TB).

DEAP Montgomery, Alabama

Analytical Method	Matrix	N	MS/ MSD	S/ SD FD		AB	тв	Total
VOC/SW8260B	Groundwater	6	1	1	1	1	1	12

Notes:

VOC = volatile organic compound

SW = SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, February 2007

N = native sample

MS/MSD = matrix spike/matrix spike duplicate

FD = field duplicate

EB = equipment blank

AB = ambient/field blank

TB = trip blank (VOC only)

Before the analytical results were released by the laboratory, both the sample and QC data were carefully reviewed to verify sample identity, instrument calibration, detection limits, dilution factors, numerical computations, accuracy of transcriptions, and chemical interpretations. Additionally, the QC data were reduced and the resulting data were reviewed to ascertain whether they were within the laboratory-defined limits for accuracy and precision.

The hardcopy data packages were reviewed by the project chemist using the process outlined in the U.S. Environmental Protection Agency (EPA) guidance document, National Functional Guidelines for Organic Data Review (EPA, 2017). EPA Level III deliverables were provided by the laboratory for this project. The areas of review included (when applicable to the method) holding time compliance, blank results, precision and accuracy, surrogate recoveries, initial and continuing calibrations, internal standards. Data

review was completed for each of the laboratory reports and any non-conformance was documented. This data review and validation process is independent of the laboratory's checks and focuses on the usability of the data to support the project data interpretation and decision-making processes.

Data that were not within the acceptance limits were appended with a qualifying flag, which consists of a single or double-letter abbreviation that reflects a problem with the data. The following validation flags were applied as necessary:

- **U** Undetected. The analyte/compound was analyzed for, but not detected above the method detection limit (MDL).
- **UJ** Undetected, detection limit estimated. The analyte/compound was analyzed for and qualified as not detected. The detection limit is estimated due to a quality assurance (QA)/QC exceedance.
- J Estimated. The analyte was positively identified above the MDL and below the reporting limit (RL) or qualified due to a QA/QC exceedance; the associated numerical value is considered an estimated concentration of the analyte in the sample.
- **R** Rejected. The data are unusable, the analyte/compound may or may not be present.
- **B** Estimated. The result was qualified to indicate possible contamination due to the presence of the analyte/compound in an associated laboratory and/or AB or EB.

Once the data review and validation process was completed, the entire data set was reviewed for chemical compound frequencies of detection, dilution factors that might affect data usability, and patterns of target compound distribution. The data set also was evaluated to identify potential data limitations, uncertainties, or both, in the analytical results.

Holding Times

Samples MW-13S and MW-FD01 were originally reported over the instrument calibration range, but were comparable with historical concentrations. The laboratory reanalyzed both samples 2 days outside of the 14-day holding time requirement with similar results; therefore, the original results are considered valid as estimated concentrations due to the calibration exceedance.

Potential Field Sampling and Laboratory Contamination

During the May 2023 sampling event, four types of blank samples were used to monitor potential contamination introduced during field sampling, sample handling, and shipping activities, as well as sample preparation and analysis in the laboratory.

- Trip Blank (TB): A sample of ASTM Type II water that is prepared in the laboratory before the sampling event. The water is stored in VOC sample containers and is not opened in the field, and travels back to the laboratory with the other samples for VOC analysis. This blank is used to monitor the potential for sample contamination during the sample container trip. One trip blank should be included in each sample cooler that contains samples for VOC analysis. For this field event, one trip blank sample set was submitted to Pace Analytical for PCE analysis by SW-846 Method 8260B.
- Equipment Rinsate Blank (EB): A sample of the target-free water used for the final rinse during the equipment decontamination process. This blank sample is collected by rinsing the sampling equipment after decontamination and is analyzed for the same analytical parameters as the corresponding samples. This blank is used to monitor potential contamination caused by incomplete equipment decontamination. One equipment rinsate blank should be collected per sampling event, per type of sampling equipment. One equipment rinsate blank was submitted to Pace Analytical for PCE analysis by SW-846 Method 8260B.

- Ambient/Field Blank (AB): The AB is an aliquot of the source water used for equipment decontamination. This blank monitors contamination that may be introduced from the water used for decontamination. One FB/AB should be collected from each source of decontamination water and be analyzed for the same parameters as the associated samples. One AB was submitted to Pace Analytical for PCE analysis by SW-846 Method 8260B.
- Laboratory Method Blank or Method Blank (MB): A MB is ASTM Type II water that is treated as a sample in that it undergoes the same analytical process as the corresponding field samples. The MBs are used to monitor laboratory performance and contamination introduced during the analytical procedure. One MB was prepared and analyzed for every twenty samples, or per analytical batch, whichever was more frequent.

Field, equipment, trip, and laboratory blanks for the May 2023 groundwater sampling event were reported as not detected for PCE.

General Data Qualifiers

As required by the EPA protocols, all compounds qualitatively identified at concentrations below their respective RLs but above the MDLs are appended with "J" qualifiers on the data summary tables to indicate that they are quantitative estimates. For this sample set, all monitoring well results were above the RL.

Instrument Calibration

All initial and continuing calibration results were reported within the method criteria for all target compounds.

Matrix Effects

Surrogate Spike Recovery and Internal Standard Response

Surrogate spike compounds were added to every sample, including field and laboratory blanks as well as field environmental samples and analyzed for VOCs. Surrogate spikes consist of organic compounds that are similar to the method targets in chemical composition and behavior in the analytical process, but that are not normally found in environmental samples.

Surrogate spike recoveries were used to monitor both laboratory performance and matrix interferences. Surrogate spike recoveries from field and laboratory blanks were used to evaluate laboratory performance because the blanks should represent an "ideal" sample matrix. Surrogate spike recoveries for the field samples were used to evaluate the potential for matrix interferences. According to the Functional Guidelines, data are qualified as estimated values when one or more VOC surrogate recoveries are outside of method acceptance limits.

Internal standard calibration involves the comparison of the instrument responses from the target compounds in the sample to the responses of specific standards added to the sample or sample extract prior to injection.

All surrogate recoveries and internal standards associated with the target compound for this project were within acceptance criteria.

Matrix Spike/Matrix Spike Duplicate Precision and Accuracy

The MS and MSD samples are aliquots of a native sample spiked with a known concentration of target compound(s) before sample preparation and analysis. MS/MSDs are used to document the bias and precision of a method in a given sample matrix. For the MS/MSD measurement, three aliquots of a single sample are analyzed; one native sample and two samples spiked with target compound(s). Matrix accuracy is evaluated from the spike recoveries, while precision is evaluated from a comparison of the concentrations of the MS and MSD.

MS/MSD evaluation is in conjunction with surrogate, internal standard, and laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results.

Groundwater monitoring well MW-03S was submitted to the laboratory for MS/MSD analysis during the May 2023 sampling event. MS/MSD and LCS recoveries were within criteria, therefore no data qualification was required.

One FD sample was collected and analyzed for PCE to evaluate the precision of field sampling and the variability of the sample data. Groundwater monitoring well MW-13S was selected for FD analysis during the May 2023 sampling event. The native sample and FD sample results were compared and relative percent difference (RPD) precision criteria were met.

Precision, Accuracy, Representativeness, Completeness, and Comparability (PARCCs)

Precision-is defined as the agreement between duplicate results, and was estimated by comparing MS/MSD and native/FD sample results. MS/MSD, LCS/LCSD, and FD precision was reviewed and precision was met for all samples.

Accuracy– is a measure of the agreement between an experimental determination and the true value of the parameter measured. Accuracy of the data was verified through the review of surrogate, LCS/LCSD and MS/MSD results. Surrogate and MS/MSD recoveries provide a measure of the matrix effects on the analytical accuracy. The LCS/LCSD results demonstrate accuracy and precision of the method and the laboratory's ability to meet the method criteria. Surrogate, LCS/LCSD, and MS/MSD accuracy criteria were met for all samples.

Representativeness–This criterion is a qualitative measure of the degree to which sample data accurately and precisely represent a characteristic environmental condition. Representativeness is a subjective parameter and is used to evaluate the effectiveness of the sampling plan design. Representativeness was demonstrated by providing full descriptions in the project scoping documents of the sampling techniques and the rationale used for selecting sampling locations.

Completeness—is defined as the percentage of measurements that are judged to be valid compared to the total number of measurements made. All analyses were performed within holding time requirements and within the QA/QC criteria, resulting in 100% usable data for this sampling event.

Comparability—is another qualitative measure designed to express the confidence with which one data set may be compared to another. Factors that affect comparability are sample collection and handling techniques, sample matrix type, and analytical method. Comparability is limited by the other precision, accuracy, representativeness, completeness, and comparability (PARCC) parameters because data sets can be compared with confidence only when precision and accuracy are known. Data from this investigation are comparable with other data collected at the site because only EPA methods were used to analyze the samples and EPA Level III QC data are available to support the quality of the data.

Summary and Conclusions

The conclusions of the DQE process include the following:

- The laboratory analyzed the samples for PCE according to the EPA methods as requested by the project and demonstrated by the data deliverables provided.
- AB, EB, TB, and laboratory blanks collected and analyzed for the May 2023 sampling event were reported as not detected for PCE.
- Groundwater monitoring well MW-03S was submitted to the laboratory for MS/MSD analysis with all accuracy and precision criteria met.
- Groundwater monitoring well MW-13S was selected for FD analysis with precision criteria met for PCE.
- The overall project objectives or PARCCs were met, and the data can be used in the project decisionmaking process as qualified during the DQE process.

Laboratory Report

Pace Analytical® ANALYTICAL REPORT June 26, 2023

Revised Report

Jacobs - Montgomery, AL

Sample Delivery Group: Samples Received:

L1621880 06/01/2023

Description:

Project Number:

Montgomery DEAP

Report To:

Ms. Kaye Walker 4121 Carmichael Rd, Suite 400 Montgomery, AL 36106

Тс Ss Cn Su GI Al Sc

Entire Report Reviewed By:

Cegate

Craig Cothron Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Jacobs - Montgomery, AL

SDG: L1621880

DATE/TIME. 06/26/23 12:14

PAGE: 1 of 55

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	4
Cn: Case Narrative	6
Su: Summary Results	7
8260B Volatile Organic Compounds (GC/MS)	7
Surrogate Recovery	8
GW Surrogate Summary	8
Matrix Spike / Duplicate	9
WG2072759 MS(R3933708-3) MSD(R3933708-4)	9
Laboratory Control Sample / Duplicate	10
WG2072759 LCS(R3933708-1)	10
WG2079322 LCS(R3937966-1) LCSD(R3937966-2)	11
Method Blank	12
WG2079322 R3937966-3 VOCMS32 06/16/23 17:24	12
WG2072759 R3933708-2 VOCMS6 06/06/23 21:15	13
GC/MS Performance Check	14
VOCMS6 052123 05/21/23 17:47	14
VOCMS6 052623 05/26/23 04:15	15
VOCMS6 052723 05/27/23 02:54	16
VOCMS6 060623A 06/06/23 17:53	17
VOCMS6 060623A 06/06/23 19:19	18
VOCMS32 051123 05/11/23 13:51	19
VOCMS32 061623A 06/16/23 15:11	20
Internal Standard & Retention Time	21
VOCMS6 06/06/23 18:36	21
VOCMS32 06/16/23 15:30	22
Sample Result Summary Organic Analysis Data Sheet	23
L1621880-01 06/07/23 02:43 VOCMS6	23
L1621880-02 06/07/23 03:04 VOCMS6	24
L1621880-03 06/07/23 03:26 VOCMS6	25
L1621880-04 06/07/23 03:47 VOCMS6	26
L1621880-05 06/16/23 19:17 VOCMS32	27
L1621880-05 06/07/23 04:09 VOCMS6	28
L1621880-06 06/07/23 04:30 VOCMS6	29
L1621880-07 06/16/23 19:36 VOCMS32	30
L1621880-07 06/07/23 04:52 VOCMS6	31
L1621880-08 06/07/23 05:14 VOCMS6	32
L1621880-09 06/07/23 05:35 VOCMS6	33
L1621880-10 06/06/23 23:07 VOCMS6	34

SDG: L1621880

GC/MS Initial Calibration	35				
VOCMS6 05/21/23 19:13	35				
VOCMS32 05/11/23 15:46	36				
GC/MS Calibration Verification	38				
VOCMS6 05/21/23 22:50	38				
VOCMS6 06/06/23 18:36	39				
VOCMS32 05/11/23 19:36	40				
VOCMS32 06/16/23 15:30	41				
Analytical Sequence	42				
VOCMS6 05/21/23 19:13	42				
VOCMS32 05/11/23 15:46	44				
Detection Limit Summary	45				
8260B - GW	45				
QC Result Summary Organic Analysis Data Sheet	46				
BLANK(R3933708-2) WG2072759 06/06/23 21:15 VOCMS6	46				
BLANK(R3937966-3) WG2079322 06/16/23 17:24 VOCMS32	47				
LCS(R3933708-1) WG2072759 06/06/23 18:36 VOCMS6	48				
LCS(R3937966-1) WG2079322 06/16/23 15:30 VOCMS32	49				
LCSD(R3937966-2) WG2079322 06/16/23 15:49 VOCMS32	50				
MS(R3933708-3) WG2072759 06/07/23 06:19 VOCMS6	51				
MSD(R3933708-4) WG2072759 06/07/23 06:40 VOCMS6	52				
GI: Glossary of Terms	53				
Al: Accreditations & Locations	54				
Sc: Sample Chain of Custody					

SDG: L1621880 DATE/TIME: 06/26/23 12:14

SAMPLE SUMMARY

				Collected date/time	Received date/time		
MW-2S-0523 L1621880-01 GW				05/31/23 12:05	06/01/23 09	:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759	1	06/07/23 02:43	06/07/23 02:43	JBE	Mt. Juliet, TN	
MW-3S-0523 L1621880-02 GW			Collected by	Collected date/time 05/31/23 13:40	Received da 06/01/23 09	te/time :00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759	1	06/07/23 03:04	06/07/23 03:04	JBE	Mt. Juliet, TN	
MW-8S-0523 L1621880-03 GW			Collected by	Collected date/time 05/30/23 17:40	Received da 06/01/23 09	te/time :00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759	1	06/07/23 03:26	06/07/23 03:26	JBE	Mt. Juliet, TN	
MW-12S-0523 L1621880-04 GW			Collected by	Collected date/time 05/30/23 15:20	Received da 06/01/23 09	te/time :00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759	1	06/07/23 03:47	06/07/23 03:47	JBE	Mt. Juliet, TN	
MW-13S-0523 L1621880-05 GW			Collected by	Collected date/time 05/31/23 15:25	Received da 06/01/23 09	te/time :00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260B Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759 WG2079322	1 5	06/07/23 04:09 06/16/23 19:17	06/07/23 04:09 06/16/23 19:17	JBE ADM	Mt. Juliet, TN Mt. Juliet, TN	
MW-14S-0523 L1621880-06 GW			Collected by	Collected date/time 05/31/23 09:50	Received da 06/01/23 09	te/time :00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759	1	06/07/23 04:30	06/07/23 04:30	JBE	Mt. Juliet, TN	
MW-FD01-0523 L1621880-07 GW			Collected by	Collected date/time 05/31/23 15:30	Received date/time 06/01/23 09:00		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260B Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759 WG2079322	1 5	06/07/23 04:52 06/16/23 19:36	06/07/23 04:52 06/16/23 19:36	JBE ADM	Mt. Juliet, TN Mt. Juliet, TN	
AB-01-0523 L1621880-08 GW			Collected by	Collected date/time 05/31/23 15:40	Received da 06/01/23 09	te/time :00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759	1	06/07/23 05:14	06/07/23 05:14	JBE	Mt. Juliet, TN	

PROJECT:

SDG: L1621880 DATE/TIME: 06/26/23 12:14 ²Tc ³Ss ⁴Cn ⁵Su ⁶Gl

°Sc

Ср

SAMPLE SUMMARY

			Collected by	Collected date/time	Received date/time	
EB-01-0523 L1621880-09 GW				00/01/20 10:00	00/01/20 00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759	1	06/07/23 05:35	06/07/23 05:35	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TB-01-0523 L1621880-10 GW				05/31/23 16:00	06/01/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2072759	1	06/06/23 23:07	06/06/23 23:07	JBE	Mt. Juliet, TN

°Sc

Ср

²Tc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

NA

Craig Cothron Project Manager

Report Revision History

Level II Report - Version 1: 06/07/23 12:14 Level III Report - Version 2: 06/07/23 12:24 Level II Report - Version 3: 06/26/23 12:07

Project Narrative

6/24/23 - added rerun for L1621880-05 and 07

SDG: L1621880 DATE/TIME: 06/26/23 12:14 8260B Volatile Organic Compounds (GC/MS)

SDG: L1621880 DATE/TIME: 06/26/23 12:08

2A-OR

SURROGATE RECOVERY

Analytical Method:	8260B			SDG:		L16218	380
Matrix:	GW						
Sample ID	Lab Sample ID	Instrument	File ID	DMC-1 % Rec.	DMC-2 % Rec.	DMC-3 % Rec.	TOT Out
MW-2S-0523	L1621880-01	VOCMS6	0606A_20	91.6	87.5	126	0
MW-3S-0523	L1621880-02	VOCMS6	0606A_21	92.1	89.1	126	0
MW-8S-0523	L1621880-03	VOCMS6	0606A_22	90.9	85.4	126	0
MW-12S-0523	L1621880-04	VOCMS6	0606A_23	93.1	88.6	134*	1
MW-13S-0523	L1621880-05	VOCMS6	0606A_24	95.8	91.7	126	0
MW-13S-0523	L1621880-05	VOCMS32	0616_30	111	94.3	122	0
MW-14S-0523	L1621880-06	VOCMS6	0606A_25	92.4	88.6	123	0
MW-FD01-0523	L1621880-07	VOCMS6	0606A_26	93.0	89.6	128	0
MW-FD01-0523	L1621880-07	VOCMS32	0616_31	110	94.0	119	0
AB-01-0523	L1621880-08	VOCMS6	0606A_27	90.6	88.5	131*	1
EB-01-0523	L1621880-09	VOCMS6	0606A_28	90.5	89.5	126	0
TB-01-0523	L1621880-10	VOCMS6	0606A_10	92.1	88.1	123	0
MS	R3933708-3	VOCMS6	0606A_30	88.9	92.4	135*	1
MSD	R3933708-4	VOCMS6	0606A_31	87.2	91.2	127	0
BLANK	R3937966-3	VOCMS32	0616_28	109	96.8	121	0
BLANK	R3933708-2	VOCMS6	0606A_06	91.9	88.5	125	0
LCS	R3937966-1	VOCMS32	0616_25LCSA	108	94.6	120	0
LCS	R3933708-1	VOCMS6	0606A_03LCS	90.5	91.4	122	0
LCSD	R3937966-2	VOCMS32	0616_26A	110	97.6	122	0
Pa	rm Abbreviation	Parameter			c		
DI	MC-1	Toluene-d8			8	80.0 - 120	
DI	MC-2	4-Bromofluor	obenzene		7	7.0 - 126	
DI	NC-3	1,2-Dichloroet	hane-d4		7	0.0 - 130	

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1621880 DATE/TIME: 06/26/23 12:08

3A-OR

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY L1621880-01,02,03,04,05,06,07,08,09,10

SAMPLE NO.: R3933708-3 R3933708-4

MS Sample / File ID:	R3933708-3 / 0606A_30			S	DG:		L1621880				
MSD Sample / File ID:	R3933708-4	R3933708-4 / 0606A_31			Α	Analytical Batch:			WG2072759		
OS Sample / File ID:	L1621880-03 / 0606A_22			N	latrix:		GW				
Instrument ID:	VOCMS6										
Analytical Method:	8260B										_
Analyte	Spike Amount	OS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	RPD	RPD Limit	
	ug/l	ug/l	ug/l	ug/l	%	%		%	%	%	
Tetrachloroethene	5.00	1.93	6.92	6.60	99.8	93.4	1	10.0 - 160	4.73	27	

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

3B-OR

LABORATORY CONTROL SAMPLE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

SAMPLE NO.: R3933708-1

L1621880-01,02,03,04,05,06,07,08,09,10

LCS Sample / File ID:	R3933708-	1/0606A_C	3LCS			SDG:		L1621880			
LCSD Sample / File ID:						Analytical Bat	ch:	WG20727	59		
Instrument ID:	VOCMS6					Dilution Facto	r:	1			
Analytical Method:	8260B					Matrix:		GW			
Analyte		Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limit	S	RPD	RPD Limit	
		ug/l	ug/l		%	%	%		%	%	
Tetrachloroethene		5.00	4.34		86.8		72.0 - 132				

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1621880 DATE/TIME: 06/26/23 12:08

3B-OR

LABORATORY CONTROL SAMPLE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY L1621880-05,07

SAMPLE NO.: R3937966-1 R3937966-2

LCS Sample / File ID: LCSD Sample / File ID: Instrument ID: Analytical Method:	R3937966-1 R3937966-2 VOCMS32 8260B	R3937966-1 / 0616_25LCSA R3937966-2 / 0616_26A VOCMS32 8260B				SDG: Analytical Batch: Dilution Factor: Matrix:		L1621880 WG2079322 1 GW	
Analyte		Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	RPD	RPD Limit
		ug/l	ug/l	ug/l	%	%	%	%	%
Tetrachloroethene		5.00	4.47	4.49	89.4	89.8	72.0 - 132	0.446	20

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1621880 DATE/TIME: 06/26/23 12:08 **PAGE:** 11 of 55

Lab Sample ID: Lab File ID: Instrument ID: Analytical Batch:	R3937966-3 0616_28 VOCMS32 WG2079322		SDG: Preparation Date/Time: Analysis Date/Time: Dilution Factor:	L1621880 06/16/23 17:24 06/16/23 17:24 1
Analytical Method:	8260B		Matrix:	GW
Sample ID	Lab Sample ID	Instrument	File ID	Analysis date/time
LCS	R3937966-1	VOCMS32	0616_25LCSA	06/16/23 15:30
LCSD	R3937966-2	VOCMS32	0616_26A	06/16/23 15:49
MW-13S-0523	L1621880-05	VOCMS32	0616_30	06/16/23 19:17
MW-FD01-0523	L1621880-07	VOCMS32	0616 31	06/16/23 19:36

Lab Sample ID: Lab File ID: Instrument ID: Analytical Batch: Analytical Method:	R3933708-2 0606A_06 VOCMS6 WG2072759 8260B		SDG: Preparation Date/Time: Analysis Date/Time: Dilution Factor: Matrix:	L1621880 06/06/23 21:15 06/06/23 21:15 1 GW
Sample ID	Lab Sample ID	Instrument	File ID	Analysis
				date/time
LCS	R3933708-1	VOCMS6	0606A_03LCS	06/06/23 18:36
TB-01-0523	L1621880-10	VOCMS6	0606A_10	06/06/23 23:07
MW-2S-0523	L1621880-01	VOCMS6	0606A_20	06/07/23 02:43
MW-3S-0523	L1621880-02	VOCMS6	0606A_21	06/07/23 03:04
MW-8S-0523	L1621880-03	VOCMS6	0606A_22	06/07/23 03:26
MW-12S-0523	L1621880-04	VOCMS6	0606A_23	06/07/23 03:47
MW-13S-0523	L1621880-05	VOCMS6	0606A_24	06/07/23 04:09
MW-14S-0523	L1621880-06	VOCMS6	0606A_25	06/07/23 04:30
MW-FD01-0523	L1621880-07	VOCMS6	0606A_26	06/07/23 04:52
AB-01-0523	L1621880-08	VOCMS6	0606A_27	06/07/23 05:14
EB-01-0523	L1621880-09	VOCMS6	0606A_28	06/07/23 05:35
MS	R3933708-3	VOCMS6	0606A_30	06/07/23 06:19
MSD	R3933708-4	VOCMS6	0606A_31	06/07/23 06:40

SDG: L1621880 DATE/TIME: 06/26/23 12:08
Lab File ID:	0521_03			SDG:		L1621880
Instrument ID:	VOCMS6			Analytical Me	ethod:	8260B
Analysis Date/Time:	05/21/23 17:47					
	Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% P elativ	ve Abundance
	95	174	50	200	123	
	96	95	5	9	6	
	173	174	0	2	0	
	174	95	50	200	81	
	175	174	5	9	8	
	176	174	95	105	98	
	177	176	5	10	6	
Sample ID	Lab Sam	ple ID		File ID		Analysis date/time
STD-1	1			0521_07	,	05/21/23 19:13
STD-2	2			0521_08	3	05/21/23 19:35
STD-5.0	5.0			0521_09)	05/21/23 19:57
STD-25	25			0521_10		05/21/23 20:19
STD-75	75			0521_11		05/21/23 20:40
STD-100	100			0521_12		05/21/23 21:02
STD-200	200			0521_13		05/21/23 21:23
SSCV	VOCMS6	0521230521_1764115	8	0521_17		05/21/23 22:50
SSCV	VOCMS6	0521230521_1864115	58	0521_18		05/21/23 23:11

SDG: L1621880 DATE/TIME: 06/26/23 12:08

5A-OR

GC/MS INSTRUMENT PERFORMANCE CHECK

GC/MS INSTRUMENT PERFORMANCE CHECK

Lab File ID: Instrument ID: Analysis Date/Time	0526_03 VOCMS6 : 05/26/23 04:	15		SDG: Analytical M	ethod:	L1621880 8260B
	Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relati	ve Abundance
	95	174	50	200	134	
	96	95	5	9	5	
	173	174	0	2	0	
	174	95	50	200	74	
	175	174	5	9	8	
	176	174	95	105	102	
	177	176	5	10	7	
Sample ID	Lab Sam	ıple ID		File ID		Analysis date/time
STD-1A	1A			0526_0	5	05/26/23 04:58
STD-5A	5A			0526_0	6	05/26/23 05:20
STD-10A	10A			0526_0	7	05/26/23 05:42
STD-15A	15A			0526_0	8	05/26/23 06:03
STD-20A	20A			0526_0	9	05/26/23 06:25
STD5	.5			0526_1	3	05/26/23 09:39
STD-1	1			0526_1	Э	05/26/23 10:01
STD-2	2			0526_2	0	05/26/23 10:22
STD-5.0	5.0			0526_2	1	05/26/23 10:44
STD-10	10			0526_2	2	05/26/23 11:06
STD-20	20			0526_2	3	05/26/23 11:27

5A-OR	
-------	--

GC/MS INSTRUMENT PERFORMANCE CHECK

b File ID: strument ID:	0527_0 [,] VOCMS	1 6		SDG: Analytical M	ethod:	L1621880 8260B
alysis Date/Time	: 05/27/2	3 02:54				
	Target Mass (r	n/e) Relative Mass	Low Limit	High Limit	% Relat	ive Abundance
	95	174	50	200	134	
	96	95	5	9	7	
	173	174	0	2	0	
	174	95	50	200	75	
	175	174	5	9	7	
	176	174	95	105	99	
	177	176	5	10	7	
Sample ID	Lab	Sample ID		File ID		Analysis date/time
STD-5	5			0527_0	95	05/27/23 04:19
STD-10	10			0527_0	6	05/27/23 04:41
STD-50	50			0527_0	7	05/27/23 05:03
STD-100	100	I		0527_0	8	05/27/23 05:24
STD-500	500)		0527_0	9	05/27/23 05:46
STD-1000	100	0		0527_1	0	05/27/23 06:08

GC/MS INSTRUMENT PERFORMANCE CHECK

ab File ID: nstrument ID:	0606A_01T VOCMS6			SDG: Analytical M	ethod:	L1621880 8260B	
Analysis Date/Time:	06/06/231/:5	3					
	Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relative	Abundance	
	95	174	50	200	129		
	96	95	5	9	6		
	173	174	0	2	0		
	174	95	50	200	78		
	175	174	5	9	8		
	176	174	95	105	97		
	177	176	5	10	7		
Sample ID	Lab Sam	ple ID		File ID		Analysis c	late/time
LCS	R393370	8-1		0606A_	03LCS	06/06/23	18:36
ICV	VOCMS	060623A0606A_03	641158	0606A_	03	06/06/23	18:36

GC/MS INSTRUMENT PERFORMANCE CHECK

o File ID: trument ID: alysis Date/Tin	0606A VOCM ne: 06/06/	A_05T S6 /23 19:19		SDG: Analytical M	lethod:	L1621880 8260B
-	Target Mass	(m/e) Relative Mass	Low Limit	High Limit	% Relat	ive Abundance
	95	174	50	200	123	
	96	95	5	9	7	
	173	174	0	2	0	
	174	95	50	200	81	
	175	174	5	9	7	
	176	174	95	105	102	
	177	176	5	10	7	
Sample ID	La	ab Sample ID		File ID		Analysis date/time
BLANK	R	3933708-2		0606A	06	06/06/23 21:15
TB-01-0523	L1	1621880-10		0606A	_10	06/06/23 23:07
MW-2S-0523	3 L1	1621880-01		0606A	_20	06/07/23 02:43
MW-3S-0523	5 L1	1621880-02		0606A	_21	06/07/23 03:04
OS	L1	1621880-03		0606A	_22	06/07/23 03:26
MW-8S-0523	3 L1	1621880-03		0606A	_22	06/07/23 03:26
MW-12S-052	3 L1	1621880-04		0606A	_23	06/07/23 03:47
MW-13S-0523	3 L1	1621880-05		0606A	_24	06/07/23 04:09
MW-14S-052	3 L1	1621880-06		0606A	_25	06/07/23 04:30
MW-FD01-05	23 L1	1621880-07		0606A	_26	06/07/23 04:52
AB-01-0523	L1	1621880-08		0606A	_27	06/07/23 05:14
EB-01-0523	L1	1621880-09		0606A_	_28	06/07/23 05:35
MS	R	3933708-3		0606A <u></u>	_30	06/07/23 06:19
MSD	R	3933708-4		0606A	_31	06/07/23 06:40

SDG: L1621880

Lab File ID: Instrument ID: Analysis Date/Time	0511_06 VOCMS32 e: 05/11/23 13:51			SDG: Analytical Me	L1621880 thod: 8260B	
	Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relative Abundance	9
	95	174	50	200	98	
	96	95	5	9	7	
	173	174	0	2	1	
	174	95	50	200	102	
	175	174	5	9	7	
	176	174	95	105	100	
	177	176	5	10	7	
Sample ID	Lab Sam	ple ID		File ID	Analy	vsis date/time
STD-0.5	0.5			0511_12	05/11/	23 15:46
STD-1	1			0511_13	05/11/	23 16:05
STD-2	2			0511_14	05/11/	23 16:24
STD-5.0	5.0			0511_15	05/11/	23 16:44
STD-25	25			0511_16	05/11/	23 17:03
STD-75	75			0511_17	05/11/	23 17:22
STD-100	100			0511_18	05/11/	23 17:41
STD-200	200			0511_19	05/11/	23 18:00
STD-10A	10A			0511_22	05/11/	23 18:58
STD-5A	5A			0511_22	05/11/	23 18:58
STD-15A	15A			0511_22	05/11/	23 18:58
STD-1A	1A			0511_22	05/11/	23 18:58
STD-20A	20A			0511_22	05/11/	23 18:58
SSCV	VOCMS	20511230511_24638	347	0511_24	05/11/	23 19:36

GC/MS INSTRUMENT

PERFORMANCE CHECK

SDG: L1621880

DATE/TIME: 06/26/23 12:08

GC/MS INSTRUMENT PERFORMANCE CHECK

ab File ID: Istrument ID: nalysis Date/Time:	061 VO 06/*	6_24T CMS32 16/23 15:11			SDG: Analytica	ll Method:	L1621880 8260B	
	Target Ma	ss (m/e)	Relative Mass	Low Limit	High Limi	t % Relativ	ve Abundance	
	95		174	50	200	103		
	96		95	5	9	6		
	173		174	0	2	1		
	174		95	50	200	97		
	175		174	5	9	7		
	176		174	95	105	98		
	177		176	5	10	7		
Sample ID		Lab Sampl	e ID		File	ID	Analysis d	ate/time
ICV		VOCMS32	061623A0616_25	638347	0616	6_25	06/16/23 1	5:30
LCS		R3937966	-1		0616	6_25LCSA	06/16/23 1	5:30
LCSD		R3937966	-2		0616	6_26A	06/16/23 1	5:49
BLANK		R3937966	-3		0616	6_28	06/16/23 1	7:24
MW-13S-0523		L1621880-0	05		0616	6_30	06/16/23 1	9:17
MW-FD01-0523		L1621880-0	07		0616	6_31	06/16/23 1	9:36

SDG: L1621880

INTERNAL STANDARD AND RETENTION TIME

SDG: Instrument ID: Std File:	L1621880 VOCMS6 0606A_03	Analytical Method: Calibration Start Date: Calibration End Date: Std Analysis Date:				8260B 05/21/23 19:13 05/27/23 06:08 06/06/23 18:36		
Sample ID	File ID	1,4	-DCB	820	50-CB	82	60-FB	
		Response	RT	Response	RT	Response	RT	
STANDARD		132480	8.14	174499	6.45	362634	4.52	
UPPER LIMIT		264960		348998		725268		
LOWER LIMIT		66240		87250		181317		
LCS R3933708-1 WG2072759 1x	0606A_03L CS	132480	8.14	174499	6.45	362634	4.52	
BLANK R3933708-2 WG2072759 1x	0606A_06	115907	8.14	163790	6.45	370704	4.51	
L1621880-10 WG2072759 1x	0606A_10	126227	8.14	167345	6.45	365039	4.52	
L1621880-01 WG2072759 1x	0606A_20	118621	8.15	169134	6.45	362337	4.52	
L1621880-02 WG2072759 1x	0606A_21	121131	8.15	165338	6.46	358876	4.53	
L1621880-03 WG2072759 1x	0606A_22	107144	8.15	162929	6.46	348653	4.53	
OS L1621880-03 WG2072759 1x	0606A_22	107144	8.15	162929	6.46	348653	4.53	
L1621880-04 WG2072759 1x	0606A_23	119653	8.15	164080	6.46	350280	4.53	
L1621880-05 WG2072759 1x	0606A_24	114781	8.15	160581	6.46	359374	4.53	
L1621880-06 WG2072759 1x	0606A_25	118410	8.15	160246	6.46	347631	4.53	
L1621880-07 WG2072759 1x	0606A_26	123073	8.15	160572	6.46	347979	4.53	
L1621880-08 WG2072759 1x	0606A_27	110311	8.15	161623	6.46	345283	4.53	
L1621880-09 WG2072759 1x	0606A_28	112471	8.15	162253	6.46	350058	4.53	
MS R3933708-3 WG2072759 1x	0606A_30	128940	8.14	168676	6.45	339312	4.53	
MSD R3933708-4 WG2072759 1x	0606A_31	133052	8.14	172249	6.45	351887	4.53	

1,4-DCB - 8260-1,4-DICHLOROBENZENE-D4 8260-CB - 8260-CHLOROBENZENE-D5 8260-FB - 8260-FLUOROBENZENE

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Jacobs - Montgomery, AL		L1621880	06/26/23 12:08	21 of 55

INTERNAL STANDARD AND RETENTION TIME

SDG: Instrument ID: Std File:	L1621880 VOCMS32 0616_25			Analytical Meth Calibration Star Calibration End Std Analysis Da	od: t Date: Date: te:	8260 05/11 05/11 05/16	B /23 15:46 /23 18:58 5/23 15:30	
Sample ID	File ID	1,4	4-DCB	82	60-CB	820	60-FB	
		Response	RT	Response	RT	Response	RT	
STANDARD		105463	7.96	114065	6.28	256544	4.36	
UPPER LIMIT		210926		228130		513088		
LOWER LIMIT		52732		57033		128272		
LCS R3937966-1 WG2079322 1x	0616_25LC SA	105463	7.96	114065	6.28	256544	4.36	
LCSD R3937966-2 WG2079322 1x	0616_26A	111317	7.96	115721	6.28	260119	4.36	
BLANK R3937966-3 WG2079322 1x	0616_28	107871	7.96	111544	6.28	256954	4.36	
L1621880-05 WG2079322 5x	0616_30	101284	7.96	111542	6.28	255204	4.36	
L1621880-07 WG2079322 5x	0616_31	95557	7.96	106376	6.28	241507	4.36	

1,4-DCB - 8260-1,4-DICHLOROBENZENE-D4 8260-CB - 8260-CHLOROBENZENE-D5 8260-FB - 8260-FLUOROBENZENE

*: Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Jacobs - Montgomery, AL		L1621880	06/26/23 12:08	22 of 55

SAMPLE NO.: MW-2S-0523

Tetrachloroethene	127-18-4	572	26.1		0,300	100
			ug/l		ug/l	ug/l
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
Total Solids (%):				Final Wt/Vol:	5 mL	
Matrix:	GW			Initial Wt/Vol:		_
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Dilution Factor:	1			Prep Method:	8260B	
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 02:43	
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 02:43	
Lab File ID:	0606A_20			Received Date/Time:	06/01/23 09:00	
Client Sample ID:	MW-2S-0523			Collected Date/Time:	05/31/23 12:05	
Lab Sample ID:	L1621880-01			SDG:	L1621880	

Tetrachloroethene	127-18-4	5.73	3.16		0.300	1.00	
			ug/l		ug/l	ug/l	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL	
Total Solids (%):				Final Wt/Vol:	5 mL		
Matrix:	GW			Initial Wt/Vol:			
Analytical Method:	8260B			Sample Vol Used:	5 mL		
Dilution Factor:	1			Prep Method:	8260B		
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 03:04		
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 03:04		
Lab File ID:	0606A_21			Received Date/Time:	06/01/23 09:00		
Client Sample ID:	MW-3S-0523			Collected Date/Time:	05/31/23 13:40		
Lab Sample ID:	L1621880-02			SDG:	L1621880		

SAMPLE NO.: MW-8S-0523

Tetrachloroethene	127-18-4	5.73	1.93		0.300	1.00
			ug/l		ug/l	ug/l
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
Total Solids (%):				Final Wt/Vol:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Dilution Factor:	1			Prep Method:	8260B	
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 03:26	
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 03:26	
Lab File ID:	0606A_22			Received Date/Time:	06/01/23 09:00	
Client Sample ID:	MW-8S-0523			Collected Date/Time:	05/30/23 17:40	
Lab Sample ID:	L1621880-03			SDG:	L1621880	

SAMPLE NO.: MW-12S-0523

Total Solids (%):			Final Wt/Vol:	5 mL	
Matrix:	GW		Initial Wt/Vol:		
Analytical Method:	8260B		Sample Vol Used:	5 mL	
Dilution Factor:	1		Prep Method:	8260B	
Analytical Batch:	WG2072759		Analysis Date/Time:	06/07/23 03:47	
Instrument ID:	VOCMS6		Preparation Date/Time:	06/07/23 03:47	
Lab File ID:	0606A_23		Received Date/Time:	06/01/23 09:00	
Client Sample ID:	MW-12S-0523		Collected Date/Time:	05/30/23 15:20	
Lab Sample ID:	L1621880-04		SDG:	L1621880	

SAMPLE NO.: MW-13S-0523

Lab Sample ID:	L1621880-05			SDG:	L1621880	
Client Sample ID:	MW-13S-0523			Collected Date/Time:	05/31/23 15:25	
Lab File ID:	0616_30			Received Date/Time:	06/01/23 09:00	
Instrument ID:	VOCMS32			Preparation Date/Time:	06/16/23 19:17	
Analytical Batch:	WG2079322			Analysis Date/Time:	06/16/23 19:17	
Dilution Factor:	5			Prep Method:	8260B	
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Total Solids (%):				Final Wt/Vol:	1 mL	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
Tetrachloroethene	127-18-4	5.56	157	Т8	1.50	5.00

SAMPLE NO.: MW-13S-0523

			ug/l		ug/l	ug/l
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
Total Solids (%):				Final Wt/Vol:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Dilution Factor:	1			Prep Method:	8260B	
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 04:09	
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 04:09	
Lab File ID:	0606A_24			Received Date/Time:	06/01/23 09:00	
Client Sample ID:	MW-13S-0523			Collected Date/Time:	05/31/23 15:25	
Lab Sample ID:	L1621880-05			SDG:	L1621880	

SAMPLE NO.: MW-14S-0523

Tetrachloroethene	127-18-4	5 73	ug/l		<i>ug/i</i> 0.300	100
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
Total Solids (%):				Final Wt/Vol:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Dilution Factor:	1			Prep Method:	8260B	
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 04:30	
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 04:30	
Lab File ID:	0606A_25			Received Date/Time:	06/01/23 09:00	
Client Sample ID:	MW-14S-0523			Collected Date/Time:	05/31/23 09:50	
Lab Sample ID:	L1621880-06			SDG:	L1621880	

SDG: L1621880

SAMPLE NO.: MW-FD01-0523

Lab Sample ID:	L1621880-07			SDG:	L1621880	
Client Sample ID:	MW-FD01-0523			Collected Date/Time:	05/31/23 15:30	
Lab File ID:	0616_31			Received Date/Time:	06/01/23 09:00	
Instrument ID:	VOCMS32			Preparation Date/Time:	06/16/23 19:36	
Analytical Batch:	WG2079322			Analysis Date/Time:	06/16/23 19:36	
Dilution Factor:	5			Prep Method:	8260B	
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Total Solids (%):				Final Wt/Vol:	1 mL	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
Tetrachloroethene	127-18-4	5.57	151	Т8	1.50	5.00

SAMPLE NO.: MW-FD01-0523

otrachloroothono	127 19 /	5 72	Ug/I	E	<i>ug/i</i>	100	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL	
Total Solids (%):				Final Wt/Vol:	5 mL		
Matrix:	GW			Initial Wt/Vol:	·		
Analytical Method:	8260B			Sample Vol Used:	5 mL		
Dilution Factor:	1			Prep Method:	06/07/23 04:52 8260B		
Analytical Batch:	WG2072759			Analysis Date/Time:			
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 04:52		
Lab File ID: 0606A_26			Received Date/Time:	06/01/23 09:00			
Client Sample ID:	MW-FD01-0523			Collected Date/Time:	05/31/23 15:30		
Lab Sample ID:	L1621880-07			SDG:	L1621880		

SDG: L1621880

Tetrachloroethene	127-18-4	5.73	U		0.300	1.00	
			ug/l		ug/l	ug/l	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL	
Total Solids (%):				Final Wt/Vol:	5 mL		
Matrix:	GW			Initial Wt/Vol:			
Analytical Method:	8260B			Sample Vol Used:	5 mL		
Dilution Factor:	1			Prep Method:	8260B		
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 05:14		
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 05:14		
Lab File ID:	0606A_27			Received Date/Time:	06/01/23 09:00		
Client Sample ID:	AB-01-0523			Collected Date/Time:	05/31/23 15:40		
Lab Sample ID:	L1621880-08			SDG:	L1621880		

Lab Sample ID:	L1621880-09			SDG:	L1621880	
Client Sample ID:	EB-01-0523			Collected Date/Time:	05/31/23 15:55	
Lab File ID:	0606A_28			Received Date/Time:	06/01/23 09:00	
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 05:35	
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 05:35	
Dilution Factor:	1			Prep Method:	8260B	
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Total Solids (%):				Final Wt/Vol:	5 mL	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
Tetrachloroethene	127-18-4	0	U		0.300	1.00

Lab Sample ID:	LI621880-10			SDG: Callested Date/Times	LI621880	
Client Sample ID:	IB-01-0523			Collected Date/Time:	05/31/23 16:00	
Lab File ID:	0606A_10			Received Date/Time:	06/01/23 09:00	
Instrument ID:	VOCMS6			Preparation Date/Time:	06/06/23 23:07	
Analytical Batch:	WG2072759			Analysis Date/Time:	06/06/23 23:07	
Dilution Factor:	1			Prep Method:	8260B	
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Matrix:	GW			Initial Wt/Vol:	. <u></u>	
Total Solids (%):		<u>.</u>		Final Wt/Vol:	5 mL	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
Tetrachloroethene	127-18-4	0	U		0.300	1.00

GC/MS INITIAL CALIBRATION DATA

SDG:	L1621880			Analytical N	lethod:		8260B			
Instrument ID:	VOCMS6									
Analyte	RRF: 1	RRF: 2	RRF: 5.0	RRF: 25	RRF: 75	RRF: 100	RRF: 200	RRF. Avg	%RSD	COD
Analysis date/time	05/21/23 19:13	05/21/23 19:35	05/21/23 19:57	05/21/23 20:19	05/21/23 20:40	05/21/23 21:02	05/21/23 21:23			
TETRACHLOROETHENE	0.4110	0.4790	0.4730	0.5220	0.52	0.5060	0.4910	0.486002	7.82	
1,2-DICHLOROETHANE-D4	0.2790	0.2640	0.2670	0.2670	0.24	0.2360	0.2310	0.254777	7.35	
TOLUENE-D8	2.3970	2.4130	2.3090	2.33	2.5690	2.59	2.6320	2.462731	5.35	
4-BROMOFLUOROBENZENE	0.88	0.8720	0.8530	0.87	0.9770	1.0040	1.04	0.928267	8.26	
File ID:	0521_07	0521_08	0521_09	0521_10	0521_11	0521_12	0521_13			

GC/MS INITIAL CALIBRATION DATA

SDG: Instrument ID:	L1621880 VOCMS32			Analy	tical Method	:	82	260B	
Analyte		RRF: 0.5	RRF: 1	RRF: 2	RRF: 5.0	RRF: 25	RRF: 75	RRF: 100	RRF: 200
Analysis date/time		05/11/23 15:46	05/11/23 16:05	05/11/23 16:24	05/11/23 16:44	05/11/23 17:03	05/11/23 17:22	05/11/23 17:41	05/11/23 18:00
TETRACHLOROETHENE		0.7410	0.7470	0.7080	0.73	0.7970	0.7360	0.7430	0.6720
1,2-DICHLOROETHANE-D4		0.3190	0.3140	0.3070	0.2980	0.2940	0.2960	0.2880	0.28
TOLUENE-D8		2.3630	2.2330	2.1960	2.1360	2.0420	1.9140	1.8470	1.6570
4-BROMOFLUOROBENZENE		0.9290	0.90	0.8760	0.8740	0.8870	0.8420	0.8090	0.7440
File ID:		0511_12	0511_13	0511_14	0511_15	0511_16	0511_17	0511_18	0511_19

SDG: L1621880

GC/MS INITIAL CALIBRATION DATA

SDG:	L1621880	Analytical Method:			8260B
Instrument ID:	VOCMS32				
	Analyte	RRF. Avg	%RSD	COD	
	Analysis date/time				
	TETRACHLOROETHENE	0.734284	4.82		
	1,2-DICHLOROETHANE-D4	0.29931	4.36		
	TOLUENE-D8	2.048553	11.29		
	4-BROMOFLUOROBENZENE	0.857449	6.83		

SDG:	L1621880		Calibrat	ion (begiı	n) date/time:	05/	21/23 19:13		
Instrument ID:	VOCMS6		Calibrat	ion (end)	date/time:	05/	27/23 06:08		
Lab File ID:	0521_17		Analysis	s date/tim	ie:	05/	21/23 22:50		
Analytical Method:	8260B		Sample	ID:		SSC	CV		
Analyte	Avg. RRF	RRF	Min. RRF	Diff.	Max Diff.	True Value	Result	Result	Limits
				%	%	mg/l	mg/l	% Rec.	%
TETRACHLOROETHENE	0.486002	0.48097890		1.03	40	0.0050	0.004948	99	
1,2-DICHLOROETHANE-D4	0.254777	0.26911550		5.63	40	0.0160	0.01690	106	70 - 130
4-BROMOFLUOROBENZENE	0.928267	0.88894090		4.24	40	0.0160	0.01532	95.80	67 - 138
TOLUENE-D8	2 462731	2 389659		2 97	40	0.0160	0.01553	97.10	75 - 131
	2.102701	2.0000000		2.07					

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1621880

SDG:	L1621880		Calibrat	ion (begin)) date/time:	05/2	1/23 19:13		
Instrument ID:	VOCMS6		Calibrat	ion (end) d	late/time:	05/2	7/23 06:08		
Lab File ID:	0606A_03		Analysis	s date/time	:	06/0	6/23 18:36		
Analytical Method:	8260B		Sample	ID:		ICV			
Analyte	Avg. RRF	RRF	Min. RRF	Diff.	Max Diff.	True Value	Result	Result	Limits
				%	%	mg/l	mg/l	% Rec.	%
TETRACHLOROETHENE	0.486002	0.42177890		% 13.20	%	<i>mg/l</i> 0.0050	<i>mg/l</i> 0.004339	% Rec. 86.80	%
TETRACHLOROETHENE 1,2-DICHLOROETHANE-D4	0.486002 0.254777	0.42177890 0.31100780		% 13.20 22.10	%	<i>mg/l</i> 0.0050 0.0160	<i>mg/l</i> 0.004339 0.01953	% Rec. 86.80 122	% 70 - 130
TETRACHLOROETHENE 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE	0.486002 0.254777 0.928267	0.42177890 0.31100780 0.84876130		% 13.20 22.10 8.56	%	mg/l 0.0050 0.0160 0.0160	mg/l 0.004339 0.01953 0.01463	% Rec. 86.80 122 91.40	% 70 - 130 70 - 130
TETRACHLOROETHENE 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE TOLUENE-D8	0.486002 0.254777 0.928267 2.462731	0.42177890 0.31100780 0.84876130 2.228414		% 13.20 22.10 8.56 9.51	%	mg/l 0.0050 0.0160 0.0160 0.0160	mg/l 0.004339 0.01953 0.01463 0.01448	% Rec. 86.80 122 91.40 90.50	% 70 - 130 70 - 130 70 - 130

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1621880

SDG:	L1621880		Calibrat	ion (begin) date/time:	05/1	1/23 15:46		
Instrument ID:	VOCMS32		Calibrat	ion (end) d	date/time:	05/1	1/23 18:58		
Lab File ID:	0511_24		Analysis	s date/time	e:	05/1	1/23 19:36		
Analytical Method:	8260B		Sample	ID:		SSC	V		
Analyte	Avg. RRF	RRF	Min. RRF	Diff.	Max Diff.	True Value	Result	Result	Limits
				%	%	mg/l	mg/l	% Rec.	%
TETRACHLOROETHENE	0.734284	0.67151190		8.55	40	0.0050	0.004573	91.50	
1,2-DICHLOROETHANE-D4	0 299310	0 3178 8110		6.20	40	0.0160	0.01600	106	70 - 130
	0.233310	0.31788110		0.20	40	0.0100	0.01099	100	70 - 150
4-BROMOFLUOROBENZENE	0.857449	0.91033360		6.20 6.17	40	0.0160	0.01699	106	67 - 138
4-BROMOFLUOROBENZENE TOLUENE-D8	0.857449 2.048553	0.91033360		6.17 12.40	40 40 40	0.0160 0.0160	0.01699 0.01798	106 106 112	67 - 138 75 - 131

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1621880

SDG:	L1621880		Calibrat	ion (begin)	date/time:	05/11	/23 15:46		
Instrument ID:	VOCMS32		Calibrat	ion (end) d	ate/time:	05/11	/23 18:58		
Lab File ID:	0616_25		Analysis	s date/time	:	06/16	5/23 15:30		
Analytical Method:	8260B		Sample	ID:		ICV			
Analyte	Avg. RRF	RRF	Min. RRF	Diff.	Max Diff.	True Value	Result	Result	Limits
				%	%	mg/l	mg/l	% Rec.	%
TETRACHLOROETHENE	0.734284	0.65568230		% 10.70	% 20	<i>mg/l</i> 0.0050	<i>mg/l</i> 0.004465	% Rec. 89.30	%
TETRACHLOROETHENE 1,2-DICHLOROETHANE-D4	0.734284 0.299310	0.65568230 0.360102		% 10.70 20.30	% 20	<i>mg/l</i> 0.0050 0.0160	<i>mg/l</i> 0.004465 0.01925	% Rec. 89.30 120	% 70 - 130
TETRACHLOROETHENE 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE	0.734284 0.299310 0.857449	0.65568230 0.360102 0.810757		% 10.70 20.30 5.45	% 20	<i>mg/l</i> 0.0050 0.0160 0.0160	mg/l 0.004465 0.01925 0.01513	% Rec. 89.30 120 94.60	% 70 - 130 70 - 130
TETRACHLOROETHENE 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE TOLUENE-D8	0.734284 0.299310 0.857449 2.048553	0.65568230 0.360102 0.810757 2.215745		% 10.70 20.30 5.45 8.16	% 20	<i>mg/l</i> 0.0050 0.0160 0.0160 0.0160	mg/l 0.004465 0.01925 0.01513 0.01731	% Rec. 89.30 120 94.60 108	% 70 - 130 70 - 130 70 - 130

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

8B-OR

ANALYTICAL SEQUENCE

SDG: Instrument ID:	L1621880 VOCMS6	Analytical Metho Calibration Start Calibration End I	d: Date: Date:	8260B 05/21/23 19:13 05/27/23 06:08	
Client Sample ID	Lab Sample ID	File ID	Analysis Date Time	Dilution	Batch
TUNE	VOCMS60521230521_03641158	0521_03	05/21/23 17:47		
CAL	1	0521_07	05/21/23 19:13		
CAL	2	0521_08	05/21/23 19:35		
CAL	5.0	0521_09	05/21/23 19:57		
CAL	25	0521_10	05/21/23 20:19		
CAL	75	0521_11	05/21/23 20:40		
CAL	100	0521_12	05/21/23 21:02		
CAL	200	0521_13	05/21/23 21:23		
SSCV	VOCMS60521230521_17641158	0521_17	05/21/23 22:50		
SSCV	VOCMS60521230521_18641158	0521_18	05/21/23 23:11		
TUNE	VOCMS60526230526_01641158	0526_01	05/26/23 03:32		
TUNE	VOCMS60526230526_02641158	0526_02	05/26/23 03:54		
TUNE	VOCMS60526230526_03641158	0526_03	05/26/23 04:15		
CAL	1A	0526_05	05/26/23 04:58		
CAL	5A	0526_06	05/26/23 05:20		
CAL	10A	0526_07	05/26/23 05:42		
CAL	15A	0526_08	05/26/23 06:03		
CAL	20A	0526_09	05/26/23 06:25		
CAL	.5	0526_18	05/26/23 09:39		
CAL	1	0526_19	05/26/23 10:01		
CAL	2	0526_20	05/26/23 10:22		
CAL	5.0	0526_21	05/26/23 10:44		
CAL	10	0526_22	05/26/23 11:06		
CAL	20	0526_23	05/26/23 11:27		
TUNE	VOCMS60527230527_01641158	0527_01	05/27/23 02:54		
CAL	5	0527_05	05/27/23 04:19		
CAL	10	0527_06	05/27/23 04:41		
CAL	50	0527_07	05/27/23 05:03		
CAL	100	0527_08	05/27/23 05:24		
CAL	500	0527_09	05/27/23 05:46		
CAL	1000	0527_10	05/27/23 06:08		
TUNE	VOCMS6060623A0606A_01T641158	0606A_01T	06/06/23 17:53		
ICV	VOCMS6060623A0606A_03641158	0606A_03	06/06/23 18:36		
LCS	R3933706-1	0606A_03LCSA	06/06/23 18:36	1	WG2072435
LCS	R3933707-1	0606A_03LCSB	06/06/23 18:36	1	WG2072634
LCS	R3933708-1	0606A_03LCS	06/06/23 18:36	1	WG2072759
TUNE	VOCMS6060623A0606A_05T641158	0606A_05T	06/06/23 19:19		
BLANK	R3933706-2	0606A_06A	06/06/23 21:15	1	WG2072435
BLANK	R3933707-2	0606A_06B	06/06/23 21:15	1	WG2072634
BLANK	R3933708-2	0606A_06	06/06/23 21:15	1	WG2072759
L1619661-10	L1619661-10	0606A_07	06/06/23 22:02	1	WG2072435
L1620914-03	L1620914-03	0606A_08	06/06/23 22:23	1	WG2072634
TB-01-0523	L1621880-10	0606A_10	06/06/23 23:07	1	WG2072759
L1622080-04	L1622080-04	0606A_11	06/06/23 23:28	1	WG2072759
L1622181-01	L1622181-01	0606A_12	06/06/23 23:50	1	WG2072759
L1622181-04	L1622181-04	0606A_13	06/07/23 00:11	1	WG2072759
L1622181-05	L1622181-05	0606A_14	06/07/23 00:33	1	WG2072759
L1623075-01	L1623075-01	0606A_15	06/07/23 00:54	1	WG2072759
L1623075-02	L1623075-02	0606A_16	06/07/23 01:16	1	WG2072759
L1623075-03	L1623075-03	0606A_17	06/07/23 01:38	1	WG2072759
L1623075-04	L1623075-04	0606A_18	06/07/23 01:59	1	WG2072759

SDG: L1621880

8B-OR

ANALYTICAL SEQUENCE

SDG: Instrument ID:	L1621880 VOCMS6	Analytical Met Calibration St	thod: art Date:	8260B 05/21/23 19:13	
		Calibration En	d Date:	05/27/23 06:0	8
Client Sample ID	Lab Sample ID	File ID	Analysis Date Time	Dilution	Batch
L1623075-05	L1623075-05	0606A_19	06/07/23 02:21	1	WG2072759
MW-2S-0523	L1621880-01	0606A_20	06/07/23 02:43	1	WG2072759
MW-3S-0523	L1621880-02	0606A_21	06/07/23 03:04	1	WG2072759
MW-8S-0523	L1621880-03	0606A_22	06/07/23 03:26	1	WG2072759
MW-12S-0523	L1621880-04	0606A_23	06/07/23 03:47	1	WG2072759
MW-13S-0523	L1621880-05	0606A_24	06/07/23 04:09	1	WG2072759
MW-14S-0523	L1621880-06	0606A_25	06/07/23 04:30	1	WG2072759
MW-FD01-0523	L1621880-07	0606A_26	06/07/23 04:52	1	WG2072759
AB-01-0523	L1621880-08	0606A_27	06/07/23 05:14	1	WG2072759
EB-01-0523	L1621880-09	0606A_28	06/07/23 05:35	1	WG2072759
L1621896-01	L1621896-01	0606A_29	06/07/23 05:57	1	WG2072759
MS	R3933708-3	0606A_30	06/07/23 06:19	1	WG2072759
MSD	R3933708-4	0606A_31	06/07/23 06:40	1	WG2072759

SDG: L1621880

8B-OR

ANALYTICAL SEQUENCE

SDG:	L1621880	Analytical Meth	nod:	8260B	
Instrument ID:	VOCMS32	Calibration Sta	rt Date:	05/11/23 15:46	
		Calibration Enc	I Date:	05/11/23 18:58	
Client Sample ID	Lab Sample ID	File ID	Analysis Date Time	Dilution	Batch
TUNE	VOCMS320511230511_04638347	0511_04	05/11/23 13:04		
TUNE	VOCMS320511230511_05638347	0511_05	05/11/23 13:23		
TUNE	VOCMS320511230511_06638347	0511_06	05/11/23 13:51		
CAL	0.5	0511_12	05/11/23 15:46		
CAL	1	0511_13	05/11/23 16:05		
CAL	2	0511_14	05/11/23 16:24		
CAL	5.0	0511_15	05/11/23 16:44		
CAL	25	0511_16	05/11/23 17:03		
CAL	75	0511_17	05/11/23 17:22		
CAL	100	0511 18	05/11/23 17:41		
CAL	200	0511 19	05/11/23 18:00		
CAL	1A	0511 22	05/11/23 18:58		
CAL	5A	0511 22	05/11/23 18:58		
CAL	10A	0511 22	05/11/23 18:58		
CAL	15A	0511 22	05/11/23 18:58		
CAL	20A	0511_22	05/11/23 18:58		
SSCV	VOCMS320511230511_24638347	0511_24	05/11/23 19:36		
	VOCMS3206162340616 24T638347	0616_24T	06/16/23 15:11		
CV	VOCMS3206162340616_25638347	0616_25	06/16/23 15:30		
CS .	R3937966-1	0616_25LCSA	06/16/23 15:30	1	WG2079322
CS	R3937967-1	0616_25LCSR	06/16/23 15:30	1	WG2079353
	R3937968-1	0616_25LCSD	06/16/23 15:30	1	WG2079333
CSD	R3937966-2	0616_264	06/16/23 15:49	1	WG2079322
CSD	R3937967-2	0616_26B	06/16/23 15:49	1	WG2079353
CSD	R3937968-2	0616_26	06/16/23 15:49	1	WG20793555 WG2079413
	R3937966-3	0616_28	06/16/23 17:24	1	WG20793322
	R3937967-3	0616_28B	06/16/23 17:24	1	WG2079353
	P3937968-3	0616_284	06/16/23 17:24	1	WG20793555
1624668-01	1624668-01	0616_204	06/16/23 18:58	1	WG2079353
1024000-01 MW 135 0523	11621880.05	0616_20	06/16/23 10:30	5	WG2079333
MW ED01 0523	11621880.07	0616_31	06/16/23 19:36	5	WG2079322
1624617 02	11624617.02	0616_32	06/16/23 19:55	5	WG2079352
1624617 03	11624617-02	0616_33	06/16/23 20:14	20	WG2079353
1624668 11	11624668 11	0616_34	06/16/23 20:33	200	WG2079353
1625952 02	11625952.02	0616_36	06/16/23 20:33	1	WG2079355
1625952-02	1625952-02	0616_37	06/16/23 21:12	1	WG2079413
1625952-03	1625952-03	0616_38	06/16/23 21:50	1	WG2079413
1626067-01	11626067-01	0616 39	06/16/23 22:00	1	WG2079413
1626074-02	11626274-02	0616_40	06/16/23 22:09	1	WG2079413
1626274-02	11626274-03	0616_41	06/16/23 22:20	1	WG2079413
1626274-05	11626274-05	0616_42	06/16/23 22:47	1	WG2079413
1626274-03	11626274-07	0616_43	06/16/23 23:00	1	WG2079413
1626280-01	11626280-01	0616_44	06/16/23 23.25	1	WG2079413
1626601 0/	11626691 04	0616 45	06/17/23 00:02	1	WC2079413
1625952 01		0616_45	06/17/23 00:03	5	WC2079413
1626274 01		0616 47	06/17/23 00.22	5	WG2079413
1626274-01		0616 49	06/17/23 00.41	50	WG2079413
1626274-04		0616 40	06/17/23 01:00	10	WC2079413
L1020274-00	L1020274-00	0010_49	00/17/25 01:19	10	WG2079413

SDG: L1621880

11-OR

DETECTION LIMIT SUMMARY

Lab Sample IDs: Matrix:	L1621880-01,02,03,04,05,06,07,08,09,10 GW		Analytical Method: Prep Method:	8260B 8260B
	Analyte	CAS	MDL mg/l	RDL mg/l
	Tetrachloroethene	127-18-4	0.0003	0.0010

SDG: L1621880

SAMPLE NO.: R3933708-2

Lab Sample ID:	R3933708-2			SDG:	L1621880	
Client Sample ID:	BLANK			Collected Date/Time:		
Lab File ID:	0606A_06			Received Date/Time:		
Instrument ID:	VOCMS6			Preparation Date/Time:	06/06/23 21:1	5
Analytical Batch:	WG2072759			Analysis Date/Time:	06/06/23 21:1	5
Dilution Factor:	1			Prep Method:	8260B	
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Total Solids (%):				Final Wt/Vol:	5 mL	
analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
etrachloroethene	127-18-4	0	U		0.300	1.00

SAMPLE NO.: R3937966-3

Lab Sample ID:	R3937966-3			SDG:	L1621880	
Client Sample ID:	BLANK			Collected Date/Time:		
Lab File ID:	0616_28			Received Date/Time:		
Instrument ID:	VOCMS32			Preparation Date/Time:	06/16/23 17:24	
Analytical Batch:	WG2079322			Analysis Date/Time:	06/16/23 17:24	
Dilution Factor:	1			Prep Method:	8260B	
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Total Solids (%):				Final Wt/Vol:	5 mL	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
[etrachloroethene	127-18-4	0	U		0.300	1.00

SAMPLE NO.: R3933708-1

Lab Sample ID:	R3933708-1 LCS 0606A_03LCS VOCMS6			SDG:	L1621880	
Client Sample ID:				Collected Date/Time:		
Lab File ID:				Received Date/Time:		
Instrument ID:				Preparation Date/Time:	06/06/23 18:36	
Analytical Batch:	WG2072759		Analysis Date/Time: Prep Method: Sample Vol Used: Initial Wt/Vol:	06/06/23 18:36		
Dilution Factor:	1			Prep Method: Sample Vol Used: Initial Wt/Vol:	8260B 5 mL	
Analytical Method:	8260B					
Matrix:	GW					
Total Solids (%):				Final Wt/Vol:	5 mL	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
Fetrachloroethene	127-18-4	5.72	4.34		0.300	1.00

SAMPLE NO.: R3937966-1

Lab Sample ID:	R3937966-1			SDG:	L1621880	
Client Sample ID:	LCS			Collected Date/Time:		
Lab File ID:	0616_25LCSA			Received Date/Time:		
Instrument ID:	VOCMS32			Preparation Date/Time:	06/16/23 15:30 06/16/23 15:30 8260B 5 mL	
Analytical Batch:	WG2079322			Analysis Date/Time: Prep Method: Sample Vol Used:		
Dilution Factor:	1					
Analytical Method:	8260B					
Matrix:	GW			Initial Wt/Vol:		
Total Solids (%):				Final Wt/Vol:	5 mL	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
Tetrachloroethene	127-18-4	5.57	4.47		0.300	1.00

SDG: L1621880
SAMPLE RESULT SUMMARY ORGANIC ANALYSIS DATA SHEET

SAMPLE NO.: R3937966-2

Lab Sample ID:	R3937966-2	SDG:		SDG:	L1621880	
Client Sample ID:	LCSD			Collected Date/Time:		
Lab File ID:	0616_26A			Received Date/Time:		
Instrument ID:	VOCMS32			Preparation Date/Time:	06/16/23 15:49	
Analytical Batch:	WG2079322			Analysis Date/Time:		
Dilution Factor:	1			Prep Method:	8260B	
Analytical Method:	8260B			Sample Vol Used:	5 mL	
Matrix:	GW			Initial Wt/Vol:		
Total Solids (%):				Final Wt/Vol:	5 mL	
Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
[etrachloroethene	127-18-4	5.56	4,49		0.300	1.00

SDG: L1621880 DATE/TIME: 06/26/23 12:08

SAMPLE RESULT SUMMARY ORGANIC ANALYSIS DATA SHEET

Lab Sample ID:	R3933708-3			SDG:	L1621880			
Client Sample ID:	MS			Collected Date/Time:	05/30/23 17:40			
Lab File ID:	0606A_30	0606A_30		Received Date/Time:	06/01/23 09:00			
Instrument ID:	VOCMS6			Preparation Date/Time:	06/07/23 06:19			
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 06:19			
Dilution Factor:	1			Prep Method:	8260B	8260B		
Analytical Method:	8260B			Sample Vol Used:	5 mL			
Matrix:	GW			Initial Wt/Vol:				
Total Solids (%):				Final Wt/Vol:	5 mL			
Analyte	CAS	RT	Result	Qualifier	MDL	RDL		
			ug/l		ug/l	ug/l		
Tetrachloroethene	127-18-4	5.73	6.92		0.300	1.00		

SAMPLE RESULT SUMMARY ORGANIC ANALYSIS DATA SHEET

Lab Sample ID:	R3933708-4			SDG:	L1621880			
Client Sample ID:	MSD			Collected Date/Time:	05/30/23 17:40			
Lab File ID:	0606A_31			Received Date/Time:	06/01/23 09:00			
Instrument ID:	Instrument ID: VOCMS6		Preparation Date/7		06/07/23 06:40			
Analytical Batch:	WG2072759			Analysis Date/Time:	06/07/23 06:40	06/07/23 06:40		
Dilution Factor:	1			Prep Method:	8260B	8260B		
Analytical Method:	8260B			Sample Vol Used:	5 mL			
Matrix:	GW			Initial Wt/Vol:				
Total Solids (%):				Final Wt/Vol:	5 mL			
Analyte	CAS	RT	Result	Qualifier	MDL	RDL		
			ug/l		ug/l	ug/l		
Tetrachloroethene	127-18-4	5.73	6.60		0.300	1.00		

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

COD	Coefficient of Determination.
Mass	Mass of parameter.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
RRF	Relative Response Factor.
RT	Retention Time.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
Т8	Sample(s) received past/too close to holding time expiration.

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1621880

Pace Analytical Jacobs 12065 Lebanon Rd. 4121 Carmichael Dr., Suite 400 Mount Juliet, TN 37122 CHAIN OF CUSTODY RECORD H090 Montgomery, AL 36106 615-758-5858 (334) 215-9058 FAX (334) 273-7532 **Project/Contact Information** THIS AREA FOR LAB USE ONLY **Requested Analysis** PO # Pg Lab # of 148035661 **Total Number of Containers Project Name Custody Review** VOCs - PCE only SW8260B Montgomery DEAP Lab PM **Project Chemist/** LIMS Verification Log In Kaye Walker/MGM **Report Copy to** Y N Company Cust Seals pH Jacobs/Glen Davis/MGM Name/Contact Ice Y N QC Level 1 2 3 Type Matrix Sampling Preservative **Cooler Temperature** LAB **Client Sample ID** du qe

--

880

Lab ID

O P	Wa	SC	(o characters wax)							Alternate Description
	,									
/	1/		MW-2S-0523		5	X				
1	1		MW-3S-0523	MS	9	X	1			MS/MSD
1	1		MW-8S-0523		3	Х				
1	1		MW-12S-0523		3	Х	l			
1	1		MW-13S-0523		3	Х				
/	1		MW-14S-0523		3	Х	T			
1	1		MW-FD01-0523		3	Х				
/	1/		AD 01 0522		1	V			ALC: NO. CO.	

Special Instructions	Contact P	roject	Chemist with <u>ANY</u> QC exce	edance Sufficient volume se RAD Screen <0.5 mR/I	ant: N N N			
Received By Received By	ell @ 6/1/23 0900	Date/	nquished By	COC Seal Present/Int COC Signed/Accurate Bottles arrive inta Correct bottles use	Sample Receipt Checklist COC Seal Present/Intact: Y N If Applicable COC Signed/Accurate: N VOA Zero Headspace: Bottles arrive intact: N Pres.Correct/Check:			
Sampled By Ethan Davies/Brooks	5/31/23	Relin	nquished By Than Davies	D'				
5/31/2 3 600 / /	TB-01-0523	(X			-10		
5/31/23 1555 11	EB-01-0523	3	X		6	-0,"		
5/31/23 1590 //	AB-01-0523	3	X			-08		
5/31/23 1530 / 1	MW-FD01-0523	3	X			-0		
5/31/23 0950 //	MW-14S-0523	3	X			-0		
5/31/231525 //	MW-13S-0523	3	X			-0		
5/30/13 1510 11	MW-12S-0523	3	X			-0		
5/30/221740	MW-85-0523	3	X		1115/11150	-0		
5/31/73 1340 11	MW-35-0523 MS	39	X		MS/MSD	-0		
6/21/13 1705 11	MW-2S-0523	3	X			A		

6481 5469 8249

File: MGM_DEAP_COC_May_2023

ii ter

Date

Time

Attachment 2 Field Records

Project /	Client Montaomery DEL	AP-
TIME	WIND N. 1 C.Scott Port	CIMEN E. DOVES
0700	104° Mostly Sugar	Here Hick 93°
199	Ala State Bun Mee 1221	accuse Code and
	Rick Stack Marthanese	Realized Milleld
V	1220 35A 4202	Y UNCLUITS TO UN 145
08:00	HACH 2100Q -C 10319	1 Lot ARDA13A
08:08	Cal. 6,52 Read	6.52
08:09	cul 57.1 Read	57.3
08:10	ral 554 Read	554
08:15	PUMD des control	PRO C-103320
	Batten on Chrina.	
08:18	4SI Professional F	2/105 C-1032.42
08:20	MultiPAE 50 Gas	Motion C-10294
	6-18-2023 cla.	
	0×9 20.9%/ LEL	0% CO Onner
08:35	H25 0.0 may /VOC	0.2 am
	AIR Cal. PASS	1
08:37	HST Cal DO 1 mg	8.48
1	Conductivity Stand and 14	13 S/CM IN360
	Butter Splution pH. 400 (of 34-4/136 Jun/2
	Buter Solution OH 7.00 6	+ 36B 359 FEB/2
	Buffer Solution pH 10.00 L	1 3GB340 FEB/2
0855	YST. Zobell Solution L	N. 22 4100376 8-23 25
	1405-	
	A-20-202	3
	05	Da. , O

D 3632200. A. PN. EV. OI-GM Location Montgomery, AL Location Montgomery, AL Date 5/31/23 17 Date 05-30-2023 Project / Client Montgormery DEAP Project / Client Montgomery DEAP E3mph ESE 72° Sunny 09:12 E-Davies avrived ad MOM Personnel: E. Davis/ATL, S. Porter (MGM office. Begt planning work and logding chipman Wanther: 70/85°F Cloudy Equipment: 451 ProPlus, Hach 21000, Multikas. 1000 Head down town to begin gauging Gauging results on gaphrate sheet WIM. Gico Pump Compressor Bladder pump Objective: Continues Sampling downtown Monty overy monitoring Wells to VOCS 1300 Gringty complete 1310 hunch 1 19 0800 Meet en gile and conduct H&S 1410 Set up on MW-125 Tail gate - Keplue issue with air compressor 0810 Calibrate 751 1445 Begin parging MW-125 1520 Collect sample MW-125-0523 For VOC analysis DO: 772 6 mulley, 99.7% S. Coul 577: 1413 Jun 1399-71.413 PHY: 3.95-74.00 PHY: 7.03-77.00 PHO: 10-10-7 10.00 1540 Decon bladdor pump 1550 Set up on MW-085 615 Begin purging MW-085 DRP: 5TT - 224 4V, 286.5-224 - Air was liceking from bladder 0845 Set up en MW- 145 Rump causing bubbles - Htgh DO 0900 Begin purying MW-145 1730. Bladder Stred 0150 Collect sample MW-145-0523 for 1740 Collect Sample MW-D8.5-0523 for VOC analysis · Vocs Gamples will be stoved over night 1005 Decon pludder pump 025 Jurch 1800 Depart Site 1125 Set up on MW-25 with bladder punp 1237 Begin punging MW-25 1205 Collect Sample MW-25-0523 for 5/30/23 VOC analysis Rete in the Rain

Location Montgomery, AL Date 5/31/23 Project / Client Mondgomery DEAP Location Project / Client 1215 Decon the bladder pump and replace 1245 Set up on MW-35 1255 Begin purging MW-35 1300 Turbictity meter out of battery. 5. Porter goes to gas station for more. 1340 Collect sample MW-035-0523 + MS/MSD 1355 Decon and replace pladder in 1420 Set up on MW-135 1438 Begin purging MW-135 1525 Collect Sample MW-135-0523 1530 Collect FD sample MW-FD01-0523 1540 Collect Ambieni blank AB-01-0523 1555 Collect equipment black from deconned bladder pump EB-01-0523 1600 Collect prip blank TB-01-0523 * Only 1 TB bottle provided by Lab 1630 All IDW purge water dumped in approved aven at Encho-chante Writer Tweetment Plant 1900 Samples shipped Via FedEx 1730 E. Davies departs MGM.

Montgomery DEAP

Montgomery, AL

Personnel: B Davies + S. Porter

Well	Date	Time	Depth to Product, ft	Depth to Water, ft	Product Thickness, ft	Total Well Depth, ft	Comments
MW-1S	5-30-T	1147		35.62	-	51.58	0,01pm
MW-1		1147	6	36.88	-	141.40	0.0 ppm
MW-2S		1120	12	37.18	-	58.53	O. Onon Lot blacked alt
MW-3S	1	1128	-	53.23	-	59.45	0.2 +00
MW-4S	1	1246	-	28.70	~	38.512	Dilppm
MW-41		1247	-	30-12	-	125.03	P.Oppon
MW-5I		1203		54.91		158.46	1.Oppm
MW-7S		1105		NM			Blockel
MW-71	1	1112		NM			Blocked
MW-8S	1017	1019		34.61	-	51.52	0.0000
MW-81		101.0		34.52	-	118.72	0.0 pen Lid broken
MW-9S		1234		51.86		72.00	D.Depert
MW-10S		1221	-	53.88	<u>م</u> ور (71.73	0.0 ppm
MW-12S		1034	~	24.46	-	41.98	0.Dorn
MW-12		1031	-	24.98		104.42	O. Dorm soft bottom long
TMPZ-1/MW- 13S		1046	~	29.03	-	47-45	0-0 ppm
MW-14S		1054	-	28.62	-	49.32	0.0 ppm

Event: May 2023 Groundwater Sampling Event

/TE	Montgomery DI	EAP	SITE	ATION: Do	wntown Mo	ntgomery, Al		PROJ NUME	NECT IBER: 666378.01.GW			
WELL	NO: MW -	15		SAMPL	EID: Mi	N-125	-0523	1		DATE: 5	30/23	
					PUR	GING DA	TA					
WELL DIAME	TER (in): 2		TOTAL W DEPTH (f	'ELL վ t)։ 1	1.98		STATIC DE TO WATER	epth (ft):	24.46	WELL CAPACITY (gal/ft): 0.163	
1 WEL	L VOLUME (gal)	= (TOTAL WE = (4], 4	IL DEPTH	- DEPTH 1 _ 2Ч.4	O WATER) X WELL CA		2.85				
	DD: Low Fl	ou		PURGE INITIATE	DAT: 14	T: 14:45 PURG		UDED AT: 1575		TOTAL VOL. PURGED (gal): 3-5		
TIME	TIME VOLUME CUMUL. PL PURGED VOLUME R (gal) PURGED (gal) (gal) (dal)		PURGE RATE (gpm) ML/MM	DEPTH TO WATER (ft)	рН	TEMP. (°C)	SPECIFIC CONDUCTANCE (µmhos)		TURBIDITY (NTUs)	Dissolved Oxygen (mg/L)	Oxygen- Reduction Potential (mV)	
1500	1.5	1.5	280	24.34	5.44	21.2	171.8		3.74	521	164.4	
1505	0.3	1.8	280	24.34	5.44	21.2	166.1		0.78	5.22	166.0	
1510	0.3	2.1	230	24.34	5.43	21.5	167.4		1.05	1519	167.6	
1515	0.3	2.4	180	24.34	5.43	21.3	170.7		0.47	5.16	11,8.5	
152D	0.4	2.3	280	24.34	5.42	21.5	169.9		0.39	5:11	169.2	
											<u> </u>	
	CAPACITY (Gall	ons per Foot):	0.75" = 0.0	02; 1" = 0.0	04; 1.25" =	= 0.06; 2" =	$0.16; 3^n = 0.$	37; 4"	= 0.65; 5" = 1.0	02; 6" = 1.47;	12" = 5.88	
SAMPL	ED BY (PRINT)	15.1 5		/_		PLING DA	AIA // ~	-1-				
AFFILI	ATION	Ethan le	avies /	Jucop	S SIGN	ATURE(S)	1mgm	-9	~			
SAMPL	ING DD(S):			SAMPLING INITIATED AT: 1520					SAMPLING ENDED AT: 1525			
FIELD	DECONTAMINA		2 N	FIEL	D-FILTER	ED: Y	Ø		DUPLICATE:	Y	۲ ک	
	SAMPLE CON	TAINER		1	SAMPLE P	RESERVAT	ION					
	MATERIAL	VOLUME	PRE	SERVATIV	'E TO	TAL VOLUM	E FIN	IAL	INTENDED ANALYSIS AND/OR METHOD			
110.	CODE	VOLUME		USED	ADDE	D IN FIELD	(mL) p	<u>H</u>				
	AG	LOin	[1	<u>C[</u>		/ un L	- 59	6	VUCS			
REMAR	KS:								I			
(N 400	0 0				0.0		~~~		
ITER .	IAL CODES: A	AG = AMBER G	ilass; C	G = CLEAF	GLASS;	PE = POLY	ETHYLENE;	0=0	THER (SPECIE	۲J		

1

4005 - 4MB

Pg 1

AE:	Montgomery DI	EAP		SITE LOCATIC	N: Do	wntown Mo	ontgomery, A	L	PF	Rojec Umbei	ECT 3ER: 666378.01.GW			
WELL	NO: MW=	085		s	AMPL	EID: M	w-085	-05	23	-		DATE: 5	130/23	_
						PUR	GING D	ATA		_			-	
WELL DIAME				AL WELL TH (ft):		51-5	Z	ST.	ATIC DEPTH WATER (ft):	+ 31 : 31	1.57	WELL CAPACITY (gal/ft): 0-1 (_
	- VOLUME (gai)		1		ζų.<	S 7	v n i l.		_ 1 =	7				
PURG	PURGE LOW NOW					DAT. 16	1619 PURGE			1743		TOTAL VOL. 3.7		1
TIME	TIME VOLUME CUMUL. PURGE PURGED VOLUME RATE (gal) PURGED (gpm) (al) bulkering			GE DE TE 1 m) WA	DEPTH TO WATER pH (°C)			cc	SPECIFIC CONDUCTANCE (µmhos) (NTUs)			Dissolved Oxygen (mg/L)	Oxygen- Reduction Potential (mV)	
1625	0.3	0.S	150	32.	.88	5.04	26-9	21	175		1.36	5.09	186.7	
1630	0 =	0.4	130) 32.	95	5.03	26.3	2	16-9	4	5-61	5.04	1861	
1635	0	05	130	0 33	00	503	263	2	24.2	·	2.04	5.12	185.8	_
1040	0.1	0.6	30	33	00	5.03	26.9	2	14.2		1.49	5.12	186.1	_
1645	0.1	0.4	150	> 33	00	505	26.7	-1	<u>250</u>		275	5.19	185.7	_
1670	6.1	0.6	140) <u>77</u> 12	12	D.0L 525	125.1	1	<u> </u>		205	817	1240	
1700	0.1	1.2	200	77	6 2 3	559	15.0	11	7. (<u> </u>	-1	7.1	9.07	164.1	-
1720	0,4	1.6	100	34	.97	6.39	24.3	11	1-5		1.30	9.42	140.7	-
1730	0.5	2.1	250	34	.57	5.48	234	21	3.5		2.77	8.51	1605 .	
	CAPACITY (Gall	ons per Foot):	0.75"	= 0.02;	1" = 0.	04; 1.25"	= 0.06; 2" =	0.16;	3" = 0.37;	4" = ().65; 5 [°] = 1.	02; 6" = 1.47;	12" = 5.88	_ Con
SAMPL	ED BY (PRINT)	/				SAM	PLING D PLER(S)		1 1 -7	-	45			
AFFILI	TION E	than D	quie	15/5.	redk	-S SIGN	ATURE(S)	Ħ	al'	9				
SAMPL	ING D(S): 3(a	dder			SAMPLING INITIATEDAT: 1740						SAMPLING ENDED AT:	1743		
FIELD	DECONTAMINA		7	N	FIEL	D-FILTER	ED: Y		Ø	- (DUPLICATE: Y			
	SAMPLE CON				1	SAMPLE F	PRESERVAT	ION		-				
NO.	MATERIAL	VOLUME		PRESER				IE (mL)	FINAL		AND/OR METHOD			
3	KG	40mL		HC.	(- 7000	39.5	(112)	5.48	-	VO	5		-
														_
														_
														_
													<u>. </u>	-
														-
			\neg											
REMAR	KS: Issues	with b	Indde	er pur	np	ris ben	k cang	ine						
(/						
, TER	IAL CODES: /	AG = AMBER (GLASS	; CG = (CLEAF	R GLASS;	PE = POLY	ΈΤΗ	<u>LENE; O</u>	= OTH	ER (SPECIF	Y)		

- {

۴

t-

185-6 - 10

1

AR. P. Y. L. L. L. L.

Pg Z

E AE	: Montgomery D	EAP	SITE	ATION: Do	writown N	Nontgomery, AL		PROJ	ECT 3ER: 666378.0	1.GW				
WELL	The image is the imag													
	10100	0 >			PU	RGING DA	TA			//	/0/ - /			
WELL	TFB (in):	2	TOTAL W	ELL			STATIC DE	PTH 3 (ft):		WELL CAPACITY (gal/ft):			
1 WEL	L VOLUME (gal) = (TOTAL WE	LL DEPTH	– DEPTH "	FO WATE	ER) X WELL CA	PACITY =			<u> </u>				
	_	= (-) X	=							
PURG METH	E <u>OD:</u>			INITIATE	DAT:		ENDED AT	<u>.</u>		PURGED (ga	u):			
ТІМЕ	VOLUME PURGED (gal)	CUMUL. VOLUME PURGED (gal)	PURGE RATE (gpm)	DEPTH TO WATER (ft)	pН	TEMP. (°C)	SPECII CONDUCT (µmho	FIC ANCE s)	TURBIDITY (NTUs)	Dissolved Oxygen (mg/L)	Reduction Potential (mV)			
173	20.4	25	180	34.56	549	23.0	212.7		3.79	8.48	1607			
1740	0.5	3.0	180	34.56	548	240 211-			2.41	8.54	162.9			
<u> </u>				-										
									0.05. 57 4.4	00: 0" 1.47:	10" - 5.99			
	CAPACITY (Gal	lons per Foot):	0.75'' = 0.0	1'' = 0.1	04; 1.25 SAN	" = 0.06; 2" = 0 IPI ING DA	$3^{\circ} = 0.$	37; 4"	= 0.65; 5 = 1.1	02; 0 = 1.47;	12 = 5.00			
SAMPL		Man I	avies	Raci	SAN SIG	MPLER(S)	1 fee	~)					
SAMPL	ING	ddad	001		SAN		740			1743				
FIELD) N	FIEL	.D-FILTE	RED: Y			DUPLICATE:	Y	C			
	SAMPLE COM			I	SAMPLE	PRESERVATI					I YSIS			
NO.	MATERIAL	VOLUME	PRE	SERVATIV						AND/OR METHOD				
3	tG	40mL	6	FC.I		39.5	5.9	18	UDC	25				
			AP STE PLOCATION Downtown Montgomery, AL PMOJECT S SAMPLE TD: MWD * 0.85 - 0.51.3 DATE: 6/30/2.3 1 TOTAL WELL STATIC DEPTH CAPACITY (gal/ft): c TOTAL WELL STATIC DEPTH CAPACITY (gal/ft): c TOTAL WELL STATIC DEPTH CAPACITY (gal/ft): c TOTAL WELL TOTAL VALER (ft): CAPACITY (gal/ft): c Immarce at: PURGE PURGE PURGE CUMUL PURGE DEPTH TOTAL VOL. PURGE Oxygen CUMUL PURGE DEPTH CONDUCTANCE TURBIDITY Dissolved Doxygen Cumul PURGE DEPTH CONDUCTANCE TURBIDITY											
REMAR	IKS:		!				L		<u> </u>					
L.TER	IAL CODES: /	AG = AMBER G	LASS; C	G = CLEAF	GLASS:	; PE = POLYE	THYLENE;	0 = 0	THER (SPECIF	Y)				

E //E: Montgomery DEAP	SITE LOCATION: Down	town Montgomer	y, AL	PROJECT NUMBER: 666378.0	ROJECT IUMBER: 666378.01.GW				
WELL NO: MW=135	SAMPLE I	D: MW-17	35-0(13		DATE: 5/	51/23			
		PURGING	DATA						
WELL DIAMETER (in): 2	OTAL WELL 47-4	15	STATIC DEP TO WATER	тн 18.97	WELL CAPA <u>CITY</u> (g	al/ft): 0 - 1 6			
1 WELL VOLUME (gal) = (TOTAL WELL	DEPTH - DEPTH TO	WATER) X WEL	L CAPACITY =	_					
=(47.45	- <u>28.9</u>	7 jx 0.		<u>z 3.0</u>					
METHOD: Bladder - Low Fli	い い INITIATED A	AT: 1938	ENDED AT:	1535	PURGED (gal): 4.7			
TIME VOLUME CUMUL. F PURGED VOLUME (gal) PURGED (gal) (gal)	URGE DEPTH RATE TO (gpm) WATER (ft)	pH TEMI (° C	 SPECIFI CONDUCTA (μmhos 	IC ANCE TURBIDITY (NTUs)	Dissolved Oxygen (mg/L)	Reduction Potential (mV)			
1445 1.0 1.0 1	.50 28.98 5	72 22.1	180.7	288	7.51	41.7			
1450 04 1.4 1	80 28.97 5	.46 21.0	1 181-6	205	5.78	79.1			
1455 0.4 1.8 2	80 18.97 5	.45 12.0	180.5	124	5.69	81.1			
1500 0.4 2.2 1	80 28.975	45 21.0	181.6	68.1	7.67	84 1			
150 02 18 1	50 1297 5	41 11 6	1819	249	5.62	851			
1515 0 2 3.1 1	50 18 91 5	41 218	181.9	19.8	5.60	85 8			
1570 A.4 3.5 1	50 18.97 5	41 21.8	182.7	13.3	5.60	86.6			
1525 0.4 3.9 1	50 28,17 5	40 21.8	183.3	8.27	5.58	87.)			
L CAPACITY (Gallons per Foot): 0	75" = 0.02; 1" = 0.04;	1.25" = 0.06; 2	$2^{"} = 0.16; 3^{"} = 0.3$	$37; 4^* = 0.65; 5^* = 1.0$	02; 6" = 1.47;	12" = 5.88			
SAMPLED BY (PRINT) /		SAMPLER(S)	LATA	2					
AFFILIATION Ethan Davies	Jacobs	SIGNATURE(3) flan	qui					
SAMPLING METHOD(S):		SAMPLING	:	ENDED AT:					
FIELD DECONTAMINATION:	N FIELD-	FILTERED:	Y 🕼	DUPLICATE:	\bigcirc	Ν			
SAMPLE CONTAINER	SA		ATION	IN		YSIS			
NO. MATERIAL VOLUME	PRESERVATIVE	TOTAL VOL		AL	AND/OR METH	OD			
	HC.(40. I	<u>LD (mL) pr</u> ちょ	D VOC	NOC4				
	NO.1				/				
	DEAP SITE DROLECT PROJECT PROJECT 135 SAMPLE ID: $MUJ - [35 - 052.3]$ DATE: $5/31/23$ 135 SAMPLE ID: $MUJ - [35 - 052.3]$ DATE: $5/31/23$ 136 DEPTH MID: 17.4 15.47 VELL 19 - (TOTAL WELL DEPTH - DEPTH TO WATER) X WELL CAPACITY: - - - 1, 47.45 - 28.17 x 80-12 - - - LOW IPTE AND TO WATER) X WELL CAPACITY: - - - - - LOW IPTE AND TO WATER) X WELL CAPACITY: - - - - - LOW IPTE AND TO WATER) X WELL CAPACITY: - - - - - LOW IPTE AND TO WATER) X WELL CAPACITY: -								
REMARKS: NALL COOL /2	513 DIE	20	ł						
	11 00	/ -							
E.IERIAL CODES: AG = AMBER GLA	SS; CG = CLEAR G	LASS; PE = PC	DLYETHYLENE;	O = OTHER (SPECIF	Y)				

PILE			SITE					PROJ	ECT				
(AE	Montgomery D	EAP	LOCAT	FION: Dov	vntown Mo	ntgomery, Al	-	NUME	BER: 666378.0	IR: 666378.01.GW			
WELL	NO: MW-L	15		SAMPL	eid: M	W-145	0513	7	DATE: 5/31/23				
					PUR	GING DA	TA						
DIAME	TER (in):	1	TOTAL WE DEPTH (ft):	LL 40	1.32		STATIC DE	PTH (ft):	18.68 WELL CAPACITY (gal/ft): 0.16				
1 WEL	L VOLUME (gal) = (TOTAL WEL しゅってイ	L DEPTH –	DEPTHT) X WELL CA	APACITY =	7 7					
	-	=(41.7		LD. 0	0)x 0.16		5.5					
METH	50: Bladder	Pump-L	ov Flow	INITIATE	о ат: <i>0°</i>	00	ENDED AT:	01	5	PURGED (g	al): 50		
TIME	VOLUME PURGED (gal)	CUMUL. VOLUME PURGED	PURGE RATE (gpm)	DEPTH TO WATER (ft)	рН	TEMP. (°C)	SPECIF CONDUCT (µmhos	IC ANCE s)	TURBIDITY (NTUs)	Dissolved Oxygen (mg/L)	Oxygen- Reduction Potential (mV)		
0905	Q.U	0.4	250 1	8.68	5.40	223	196.2		584	5.49	108.8		
0110	0.2	0.6	250 2	8.68	5.38	22.2	194.0		113	5-26	109.8		
0915	0.3	0.9	250 2	8.68	5.35	12.2	192.4		59.1	4.99	110.9		
0920	0.4	1.3	250 1	8.68	5.34	22 1	192.2		31.6	4.96	110.9		
0925	0.4		250 2	8.68	5.32	22.0	191.0		24.2	4.97	()(:4		
0430	0.5	11	150 1	18:68	5.31	12	187.9		19.0	499	110.6		
0135	0:5	12.5	150 1	8,68	2.51 E 10	11	18/6		14.4	<u> 4.97</u>	11/1.4		
1099V	0.4	29	150 L	Dilab 818	7.L1 E 19	121	181 8		1.01	<u>4.16</u> 4.98	110 8		
0175	0,4	37	150 1	8.1.8	5.19	22.1	186 9		1.60	4.94	112.0		
	CAPACITY (Gal	lons per Foot):	0.75" = 0.02	; 1" = 0.0)4; 1.25" =	= 0.06; 2" =	0.16; 3'' = 0.3	37; 4":	= 0.65; 5" = 1.0	02; 6" = 1.47;	12" = 5.88		
~					SAM	PLING D	ATA						
SAMPL AFFILI	ED BY (PRINT) ATION	Ethny Da	wies /	' Snrob	ς SAMF SIGN	PLER(S) ATURE(S)	Hent	27	2				
	ING DD(S) [,]				SAMF	PLING	0150		SAMPLING ENDED AT:	0153			
FIELD	DECONTAMINA) N	FIEL	D-FILTERI	ED: Y			DUPLICATE:	Y	€₽		
1	SAMPLE CON			- 1	SAMPLE F	RESERVAT	ION		IN				
NO.	MATERIAL	VOLUME	PRES	ERVATIV	E TO		E FIN	IAL	"	AND/OR MET	HOD		
2	L G	40 40	U	JSED / }		ADDED IN FIELD (mL)			VOCS				
	10					(•	/-6						
			-										
			1										
					_								
REMAR	KS:				1				I				
								0 = 0		<u></u>			
	IAL CODES.	NG = ANIDER G	LA33, UG		GLASS,	TE = FULT	LIFILENE,	0=0					

All All

ALL AND AND A STATE OF A STATE

ME	Montgomery D	EAP	SITE	SITE LOCATION: Downtown Montgomery, AL PROJECT NUMBER: D36322							0			
WELL	NO: MW-	-019		SAMPL	.e id: M	W-025	-0523			DATE: 5/	31/23			
		1027-03			PUF	GING D	ATA		_					
WELL	TER (in):	2	TOTAL WE DEPTH (ft)	5	8.53		STATIC DE TO WATEF	PTH 1 (ft):	37-18	WELL CAPACITY (gal/ft): 0.16			
1 WEL	L VOLUME (gal)) = (TOTAL WEL = (58.9	L DEPTH - 3 _	оертна 3 7 .	IO WATEF) X WELL C.) X Ø. I (d	APACITY =	3.4	gal					
PURG	DD: Bladde	r-Low Fl	ow	PURGE INITIATE	DAT:	37	PURGE ENDED AT	: 12	10	TOTAL VOL PURGED (ga	al): 2.5			
TIME	VOLUME PURGED (gal)	CUMUL. VOLUME PURGED (gal)	PURGE RATE (gpm)	DEPTH TO WATER (ft)	рН	TEMP. (° C)	SPECIF CONDUCT (µmho	FIC ANCE s)	TURBIDITY (NTUs)	Dissolved Oxygen (mg/L)	Oxygen- Reduction Potential (mV)			
1145	0.3	0.3	180	37.20	5.17	23.5	218.1		500	5.99	88.8			
1150	0.3	0.6	180	57.20	5.17	23.3	216.4		321	6.02	90.6			
1155	0.3	0.9	180	37.20	5.17	23.2	216.3		84.2	5.99	93.0			
1100	p.4	1.3	180 3	57.20	5.17	15.2	216.3		9.04	5.96	95.4			
1205	0.4	1.7	1.80 1	57.20	5.15	13.0	215.9		7-99	5.95	97.5			
									,,					
-														
		ons per Foot):	0.75" - 0.02	· 1" → 0 (NA- 1 25"	- 0.06' 2" -	0.16: 3'' = 0.16	37. 4"	= 0.65; 5" = 1.0	$2^{\circ} 6'' = 1.47^{\circ}$	12" = 5.88			
		ons per root).	0.75 - 0.02	., 1 = 0.0	SAM	PLING D		<u>, , , , , , , , , , , , , , , , , , , </u>	- 0.00, 0 + 1.		12 - 0.00			
SAMPL	ED BY (PRINT)	Han Da	Vles /	Sacok	SAMI	PLER(S) ATURE(S)	H.L	2.						
SAMPL					SAM		1705			1207				
FIELD) _N	FIEL	.D-FILTER	ED: Y	0		DUPLICATE:	Y	17			
	SAMPLE CON	ITAINER		<u> </u>	SAMPLE F	PRESERVAT	ION		16					
	MATERIAL	VOLUME	PRES	ERVATIV	E TO		E FIN	IAL.		AND/OR MET	HOD			
7	CODE	VOLUME		USED	ADDE	DIN FIELD	(mL) pi	<u>H</u>						
ל	<u>r</u> G	40 ml				Unl	5.1	5	VDCS					
										0				
REMAR	KS:													
			A88- 00					0 - 0						
IEH .	AL CODES: A	AG = AIVIBEH GI	.A33; UG		ULASS;	PE = PULY	CINTLENE;	0=0	ILIEN ISFEUIF	<u>'</u>]				

E JE: N	Montgomery DE	EAP	SITE	SITE P LOCATION: Downtown Montgomery, AL N					PROJECT NUMBER: 666378.01.GW					
WELL N	o: MW-	035	1	SAMPLE ID: MW-035-0523					DATE: 5/31/23					
					PUR	GING DA	TA							
WELL DIAMET	ER (in): 1	-	TOTAL WE DEPTH (ft)	AL WELL 59.45 STATIC DEPTH TTH (ft): 59.45 TO WATER (ft):					53.23 WELL CAPACITY (gal/ft): 0-16					
1 WELL	VOLUME (gal)	= (TOTAL WEL	.L. DEPTH -	- DEPTH 1	TO WATER) X WELL C/	APACITY =	1.0						
PURGE	D: Bladde	-Lowl	Flow	PURGE	DAT: 124	55	PURGE ENDED AT:	17	346	TOTAL VOL PURGED (g	. / al):	2.3		
TIME	VOLUME PURGED (gal)	CUMUL. VOLUME PURGED (gal)	PURGE RATE (gpm)	DEPTH TO WATER (ft)	рН	TEMP. (°C)	SPECIF CONDUCT. (µmhos	FIC ANCE s)	TURBIDITY (NTUs)	Dissolved Oxygen (mg/L)		Oxygen- Reduction Potential (mV)		
30	0.3	0.5	0	53.23	5.79	21.8	1.05.9			9.70	5	13.6		
1320	0.4	0.7	150	53.25	5.68	21.8	208.0			9.04	7	9-1		
1325	0.1	0.8	140	53.24	5.70	21.7	207.8		7.30	6.10	Į į	1.2		
1330	0.2	1.1	150 5	53.24	5.69	21.7	106.6		4.13	8.1)	7	9.6		
1335	0.2	1.3	150 8	53.24	571	21.7	208.8		3.91	8.13	8	0.D		
1340	0.2	1.5	50	53.24	5.72	21.7	211.6		3.10	8.16	8t	2.3		
	1													
											1			
	APACITY (Galk	ons ner Foot):	0.75" = 0.02	2 [.] 1″ = 0.0	04: 1.25° =	= 0.06; 2" =	0.16: 3'' = 0.3	37: 4"	= 0.65; 5" = 1.1	02; 6" = 1.47;	12" :	= 5.88		
	a riorri (ciun	no por 1 000.	0.70 - 0.01		SAM	PLING D	ATA							
SAMPLE	D BY (PRINT)	than Do	vier!	1 Sacob	SAMF	PLER(S) ATURE(S)	The	D						
SAMPLIN					SAMF	PLING	340		SAMPLING ENDED AT:	1346				
FIELD DE	ECONTAMINA) N	FIEL	D-FILTER	ED: Y	Ø		DUPLICATE:	Ø	N	M5/MSI		
	SAMPLE CON SPECIFICA	TAINER TION			SAMPLE P	RESERVAT	ION		IN		LYSI	s l		
NO.	MATERIAL CODE	VOLUME	PRES	SERVATIV USED	TAL VOLUM	E FIN (mL) pl	PH AND/OR MET			HOD				
9	AB	Home	H	CI	21 40				VOCS					
			_											
REMARK	s: MS	+ MSD	0	13	4D				L					
	Turb	meter	out	of	batte	ry at	begil	mi	29	~				
ERIA	L CODES: A	<u>G = AMBER GL</u>	.ASS; CG	i = CLEAF	GLASS;	PE'= POLY	ETHYLENE;	Q = 0	HER (SPECIF	<u>TJ</u>				

Attachment 3 Photograph Log

2023 Remedial Action Activities

Project Title:Montgomery Downtown Environmental Assessment ProjectLocation:Montgomery, AlabamaDate:March 11, 2024

Photograph 1: Courtyard of the Orderman House Property in Old Alabama Town (historical well in background

Photograph 2: Former Location of Residential Property at 405 North Decatur Street

Photograph 3: Hotel construction west of MW-08S

Photograph 4: Hotel construction west of MW-08S

Photograph 5: 300 Block Madison

Photograph 6: 300 Block Madison

Photograph 7: 300 Block Madison

Photograph 8: 300 Block Madison

Photograph 9: 300 Block Madison

Photograph 10: 300 Block Madison - Jenny Weller Catering

Photograph 11: 300 Block Madison - Jenny Weller Catering

Photograph 12: North Lawrence Street (Parcel Number 10 03 07 2 203 014.000

Photograph 13: North Lawrence Street (Parcel Number 10 03 07 2 203 014.000)

Photograph 14: Washington Avenue Right-of-Way

Photograph 15: 317 North Decatur Street – McClendon Service Center